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DAY 3:   UNDERSTANDING VARIATION AND THE FUNNEL EXPERIMENT  
 (Stats-level 0 only) 

 (9.30am – 1.00pm;  2.00pm – 6.00pm)!
!  

 
 

Variation—the enemy of quality  (p 1)  
Back to the Western Electric Company (p 2)                                             — contains Activities 3–a and 3–b  
          
          
 
At the Ford Motor Company (p 5)                                                                                     — contains Activity 3-c 
The importance of time (p 7)                                                                     — contains Activities 3–d and 3–e 
 
More on the “sales data” (p 10)                                                                — contains Pause for Thought 3–f 

How do we compute these control limits—and why? (p 13)                                        

 
Six processes (p 19) 
 
A favourite example (p 24) 
Control chart + brain (p 26) 
 
The six processes revisited (p 30) 
 
Introduction to the Funnel Experiment (p 35) 

 

 

 

Major Activity 3–h:  The first two Rules of the Funnel (p 38) 

 

Major Activity 3–h:  Discussion (p 47);  Rules 3 and 4 of the Funnel (p 48) 

 
 

 
 
Major Activity 3–h:  Summary (p 56) 

 
Activity 3-i (p 57 [WB 46]) 

 
Read DemDim Chapter 5 (p 58) 
 
Activity 3–j (p 58 [WB 47]) 

 
 
NB  In the text, the clock icons for Stats-level 0 only are on the left-hand side of the pages during the 
morning of Day 3.  In the afternoon the timings for all Stats-levels are the same and so appear on the 
right-hand side as usual. 
!
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DAY 3:   UNDERSTANDING VARIATION AND THE FUNNEL EXPERIMENT   
 (Stats-level 1–3 only) 

 (9.00am – 1.00pm;  2.00pm – 6.00pm)!
!  

Variation—the enemy of quality  (p 1)  
Back to the Western Electric Company (p 2)                                             — contains Activities 3–a and 3–b  
          
          
 
At the Ford Motor Company (p 5)                                                                                     — contains Activity 3-c 
The importance of time (p 7)                                                                     — contains Activities 3–d and 3–e 
 
More on the “sales data” (p 10)                                                                — contains Pause for Thought 3–f 

How do we compute these control limits—and why? (p 13)                                    — contains Activity 3-g  
 
 

 
Six processes (p 19)  
A favourite example (p 24) 
Control chart + brain (p 26) 
 
The six processes revisited (p 30) 
 
Introduction to the Funnel Experiment (p 35) 

 

 

 

Major Activity 3–h:  The first two Rules of the Funnel (p 38) 

 

Major Activity 3–h:  Discussion (p 47);  Rules 3 and 4 of the Funnel (p 48) 

 
 

 
 
Major Activity 3–h:  Summary (p 56) 

 
Activity 3-i (p 57 [WB 46]) 

 
Read DemDim Chapter 5 (p 58) 
 
Activity 3–j (p 58 [WB 47]) 

 

NB  In the text, the clock icons for Stats-levels 1–3 are on the right-hand side of the pages as usual. 

     The clock icons on the left-hand side during the morning of Day 3 are for Stats-level 0 only . 
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(Stats-level 0 only)                DAY 3:  UNDERSTANDING VARIATION                (Stats-level 1–3)                         
AND THE FUNNEL EXPERIMENT 

 

!Variation—the enemy of quality 
 
I’ll start by telling you of something extremely basic that puzzled me in the 1980s when I was just beginning 
to learn about Dr Deming’s work.  It was a basic matter involved with Statistics.  Now, I had already been a 
University Lecturer in Statistics for some 12 years before ever hearing of Dr Deming.  Despite that back-
ground, for a considerable time I couldn’t understand what was arguably the most important of all the mes-
sages in his four-day seminars.  It was the need to concentrate on understanding variation—apparently 
more than on anything else.  Why was I puzzled? 
 
As already indicated on Day 1, much of the way Statistics is usually taught involves [A] data and [B] proba-
bility and probability distributions.  (Again, as I made clear at the time, if you know little or nothing about [B] 
then that doesn’t matter as far as this course is concerned—it might even be an advantage!)  In both cases     
I was always used to working with averages and with variation—both of them but with averages being the 
more important.  So I could understand Dr Deming’s interest in variation, but I couldn’t understand why he 
hardly ever mentioned the average.  Particularly when considering processes, of course it is good to reduce 
the amount that things vary, but surely it’s even more important to get the average right.  So why didn’t he 
say anything about that? 
 
Eventually, after many months, light dawned—through thinking about something from long ago: my school-
days! 
 

The school bus 
 
Throughout my schooldays, I lived out in the countryside, several miles from my school.  School started at 
9.00 each morning.  I travelled to school by bus.  The bus would usually arrive at the bus-stop near my 
home some time between 8.25 and 8.35, though occasionally a little earlier or a little later.  Now and again, 
it was very late, e.g. because it had broken down, or had been held up by a road accident, etc.  Other than 
on such rare occasions, it would always get me to school on time.  But I was not happy! 
 
To be fairly sure of catching the bus, I had to be at the bus-stop by 8.25.  To be really sure of catching it,     
I needed to be there by 8.20.  But much of the time I’d then be waiting 10 to 15 minutes, or occasionally 
longer—often when the weather was cold and raining.  (It seemed to rain a lot in England when I was young 
—and this was a bus-stop, not a bus-shelter!)  So I could well be soaking wet and/or freezing cold by the 
time the bus arrived.  Not a good start to the day! 
 
If only the bus could have arrived within, say, one minute either side of 8.30, rather than within 5 or even 10 
minutes.  Or one minute either side of 8.25, or one minute either side of 8.35, or indeed one minute either 
side of any suitable average time of arrival.  Then I could have arranged my mornings much more efficiently 
—and, with very rare exceptions, suffered no more than a two-minute soaking! 
 
So I learned that the variation in the arrival-time of the bus seriously affected my quality of life!  Note that 
the variation was actually more important than the average time of arrival.  My process was easily adapt-
able to whatever the average happened to be.  But the greater the variation, the more I risked either miss-
ing the bus altogether or getting wet through—irrespective of the average. 
 

Variation is indeed the enemy of quality. 
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BACK TO THE WESTERN ELECTRIC COMPANY 
 
Next, as promised on Day 1, here is a rather longer extract from Dr Deming’s account of what happened at 
the Western Electric Company back in the 1920s.  This is again transcribed directly from the presentation 
he gave in Versailles in July 1989 (see BDA Booklet A6 pages 2–3).   You have seen part of it before but, to 
put it mildly, it is worth repeating: 
 

“Part of Western Electric’s business involved making equipment for telephone systems.  The aim 
was, of course, reliability: to make things alike so that people could depend on them.  Western 
Electric had the ambition to be able to advertise using the phrase: “as alike as two telephones”.  
But they found that, the harder they tried to achieve consistency and uniformity, the worse were the 
effects.  The more they tried to shrink variation, the larger it got.  When any kind of error, mistake or 
accident occurred, they went to work on it to try to correct it.  It was a noble aim.  There was only 
one little trouble: things got worse.  
 
Eventually the problem went to Walter Shewhart at the Bell Laboratories.  Dr Shewhart worked on 
the problem.  He became aware of two kinds of mistakes: 

 
1. Treating a fault, complaint, mistake, accident as if it came from a special cause when in fact 

there was nothing special at all, i.e. it came from the system: from random variation due to 
common causes.  

2. Treating any of the above as if it came from common causes when in fact it was due to a 
special cause. 

! 
What difference does it make?  All the difference between failure and success. ! 
 
Dr Shewhart decided that this was the root of Western Electric’s problems.  They were failing to 
understand the difference between common causes and special causes, and that mixing them up 
makes things worse.  It is pretty important that we understand those two kinds of mistakes.  Sure 
we don’t like mistakes, complaints from customers, accidents; but, if we wade in at them without 
understanding, we only make things worse.  This is easy to prove.” 

 
Unexpected as it might be, it seems that Dr Deming first used the terms “common cause” and “special 
cause” around 1947 in discussions on prison riots (see !Out of the Crisis page 270[pages 314–315]).  Did 
something special occur to spark off a riot?  Or was the riot due to the procedures, the environment, the 
morale of both the prisoners and the prison staff, the way the staff treated the prisoners, etc, etc?  That is, 
was the common state of affairs (which Deming would refer to as the system) in the prison such that riots 
would be bound to occur from time to time?  (Think back to Day 1’s Major Activity.)  Or would it take some-
thing special !? 
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ACTIVITY 3–a 
 

Suggest some of the possible causes of variation in the arrival-time of my school bus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unsurprisingly, I do not have any data available from all those decades ago from which we could con-
struct control charts.  So, with each of the causes you’ve suggested above, simply say whether you 
think the cause is likely to have been common or special, and why.  (Be guided by the paragraph on 
prison riots that we have just seen on page 2.) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Being guided by the thoughts about prison riots, factors which result in somewhat random fluctuations 
from day to day would be interpreted as common causes, while relatively rare events which markedly 
affect the arrival time in a “one-off” manner would be interpreted as special causes.  So e.g. if the bus is 
held up by a serious road accident or by freak weather conditions such as a flood or unusually heavy 
snowfall then we would regard these as special causes.  On the other hand, normal fluctuations such as 
the number of people queuing at the bus-stops, the proportion of red traffic lights encountered along 
the journey, usual day-to-day variations in traffic-density, etc would be regarded as common causes.  
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ACTIVITY 3–b 
  
There is a saying that “Variety is the spice of life”.  This implies that variety is good.  In these early 
pages of Day 3, we (and Dr Deming!) have been arguing that variation is bad. 
 
Is there a conflict here?  (No, but clarify why not.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
! 
 
And how might reducing variation lead to increasing variety?  
 
 
 
 
! 
 
 
 
 
 

 
 
 
 
 
 

 

 
(For discussion see Appendix page 14.) 
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AT THE FORD MOTOR COMPANY 
 
On page 2 Dr Deming claimed that, if we mix up the two types of variation, “we only make things worse.  
This is easy to prove.”  So let’s prove it!  Here is a well-known illustration, originating in the Ford Motor 
Company (see Bill Scherkenbach’s The Deming Route to Quality and Productivity, around page 30 depend-
ing on the edition and reprint numbera).  
 
Input shafts for a transmission were turned in a machine equipped with an expensive automatic compensa-
tion device.  If the diameter of a shaft was too large, the compensation device reduced the machine setting 
in order to try to make the next diameter closer to its nominal value.  If the diameter was too small, the set-
ting was increased, for the same purpose.  Sounds sensible? 
 
Here is a histogram of the diameters of 50 shafts consecutively manufactured by this process.  (A “histo-
gram” is a widely-used type of diagram for illustrating data.  But in case you’re not sure about what a histo-
gram is, I’ll guide you on how to draw one on page 7.) 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
A statistician recommended that the next 50 shafts should be made with the compensation device turned 
off.  Here is the histogram of those 50 diameters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Reduced variation!  Better quality!  Everything clearly within the specifications!  With that sensible and very 
expensive compensation device turned off! 

 

Lower
Specification

Limit

Upper
Specification

Limit

Shaft diameter

Lower
Specification

Limit

Upper
Specification

Limit

Shaft diameter
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ACTIVITY 3–c 
 

To repeat: 
 

“Reduced variation!  Better quality!  Everything clearly within the specifications!  With that sensi-
ble and very expensive compensation device turned off!” 

 
How could this be? 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(If you cannot answer this question now, be sure that you will be able 
to do so before you finish working through today’s Major Activity!) 
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THE IMPORTANCE OF TIME 
 
The histogram is often not a very informative method of representing data from processes (i.e. data having 
a natural order in time)—at least, not without accompanying it by a run chart or control chart.  Why not? 
 
This is a sequence of 24 values written down in the order generated by a process:  
 

11  10  11  11  12  11  13  13  14  13  14  13  13  15  14  15  15  16  17  16  17  18  17  19 
 
Here are two forms of histogram of those data.  On the left, each item in the data is represented by a box 
stacked on the appropriate pile.  Little gaps have been left there between the boxes so that you can see 
clearly where the boxes are.  Such gaps are usually filled in, as is shown directly below and as in the Ford 
histograms you saw on page 5. 
 
 
 
 
 
 
 
 
 
 

 

 

ACTIVITY 3–d 
 

Here is another sequence of 24 numbers.  Please sketch a histogram of these data.  I suggest you use 
separate boxes as on the left above.  What do you conclude? 
 
  18  19  17  17  16  17 16  15  14  15  15  13  14  13  14  13  13  13  11  11  12  11  10  11 

 
 
 
 
 
 
 
 
 
 

 
 
  
 

A “similar histogram”?  It turned out to be the very same histogram as that obtained with the first set of 
data!  Yet the processes were surely very different from each other.  That is to say: the behaviours of 
the two processes over time were very different from each other. 

10   11   12   13   14   15   16   17   18   1910   11   12   13   14   15   16   17   18   19
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Just to be sure, let’s draw run charts of the data.  Here is a run chart for the first process. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

ACTIVITY 3–e 
 
Here again are the data from the second process (to save you from having to look back): 
 
  18  19  17  17  16  17  16  15  14  15  15  13  14  13  14  13  13  13  11  11  12  11  10  11 
 
Please draw a run chart for this second process. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Compare and contrast the learning obtained from the two ways of pictorially representing data illus-
trated in Activities 3–d and 3–e. 
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Clearly, the first process was trending upward over time; the second was trending down.  Very different 
behaviours.  Yet we found exactly the same histogram in both cases.  The two collections of numbers 
were exactly the same: they just occurred in a different order.  But the order of the numbers is all-
important for describing and understanding the behaviour of a process—it is foolish to ignore it.   

 
Histograms totally ignore the order in which the numbers come out of a process. 

Yet that order is very likely to hold the most important information of all  
about the process’s behaviour. 

 

However, that’s not to imply we should dispense with the histogram altogether.  The top priority is to learn 
whether or not a process is in statistical control.  But the histogram can sometimes indicate important 
features which may be less clear on a control chart.  For example, we have already seen how loudly the 
Ford histograms shout out the important message that the automatic compensation device was increasing 
the variation in the shaft diameters.  That could also be seen from control charts, but I’d say the histograms 
demonstrate the contrast much more obviously and straightforwardly. 
 
Dr Deming included a few histograms in Out of the Crisis.  I particularly like his commentary on the follow-
ing histogram which I have redrawn from page 229[267] of his book:  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Observing the rather abrupt cut-off on the left hand side at 6.2 mils (millimetres), he wrote that the histo-
gram … 
 

“ … shows a distribution of measured values during production.  The lower specification limit was 
6.2 mils; no upper limit.  No part recorded a failure.  Note the peak at 6.2 mils.  Were there any fail-
ures?  No one will ever know. 
 No one wishes to be the bearer of bad news.” 
 

Actually, if you look carefully at the first of the two Ford histograms on page 5, I think you will find that it 
contains not 50 but just 49 “boxes”.  Maybe there was one that fell just outside specifications and, well, … 
vanished. 
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MORE ON THE “SALES DATA” 
 
Now, also as previously promised, let’s return to the illustrative example 
with which we started Day 2.  So, if you need to, take a quick look back 
at the first three pages of Day 2 to remind yourself about what hap-
pened there.  We finished up with the run chart alongside of ten sup-
posed monthly sales figures for a new product:   
 
 
 
 
 
 
 
First, a short Pause for Thought: 
 

 
 
 

PAUSE FOR THOUGHT 3–f 
 
Does the Ford example from earlier today (pages 5–6) suggest to you any concerns about the manage-
ment’s interpretation of yesterday’s monthly sales data (Day 2 pages 1–3), the conclusions they drew, 
and the decisions they made? 
 
 
 
 
 
 
 

 

 
 
This is not an exact analogy with the Ford example because, in that case, there was an “ideal” or “tar-
get” value, and the compensation device acted according to whether the value was above or below the 
target.  Nevertheless, the management’s behaviour here was somewhat analogous—generally acting 
one way if the figure went up and another way if it went down.  The suspicion which the Ford example 
might therefore raise in our minds is that maybe such reactions could actually have increased the varia-
tion in the figures. 
 
 

Furthermore, doesn’t that type of management behaviour remind you of what you were doing yesterday 
when playing the part of the Foreman in the Red Beads Experiment?  With the sales data, the management 
team interpreted every month’s figure “in its own right”.  On some occasions it was bad news, requiring 
immediate and possibly expensive action.  On other occasions it was good news and so they could 
breathe easily again.  The Foreman moaned about high numbers of red beads and came up with “reasons” 
for them.  He praised the low numbers of red beads and found reasons for them too.  Did any of this make 
any sense from the All-Knowing’s viewpoint?  Remember that the All-Knowing genuinely understood every-
thing there was to know about the process which was producing the data (an exceptional privilege!). 
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Let’s gather together some thoughts.  What might our basic learning about variation tell us?  One crucial 
matter which is (a) obvious but (b) largely ignored by those who lack such basic learning is that all but the 
most trivial of processes exhibit some variation.  Thus, as I said in my comment on yesterday’s Pause for 
Thought 2–a (Day 2 page 4), the figure being recorded will indeed usually either go up or down!  That being 
the case, greater attention needs to be paid not to whether the figure goes up or down but to how far the 
figure goes up or down.  Now, the management team did this to an extent, but only to a relatively small 
extent.  And, without the use of control charts, that is what usually happens.  Even if people appreciate that 
processes do indeed have their own inherent variation (the common-cause variation) the truth is that, with-
out using a control chart, they almost always underestimate how large it is (recall my first additional learn-
ing-point from the Red Beads Experiment on Appendix page 10).  Thus they are still largely prone to the 
effect shown in the Ford example: increasing variation as opposed to doing anything useful.  The only relia-
ble way to assess the order of magnitude of the common-cause variation is to use a control chart. 
 
So let’s now carry on as we did through much of yesterday with the 
various sets of Red Beads data: let’s now upgrade the run chart to a 
control chart by inserting control limits. 
  
With that build-up, the control chart on the right should perhaps be 
less of a surprise than if I had shown it to you yesterday before you 
began learning from the Red Beads Experiment.  Look where those 
control limits are in relation to the data!  
 
Returning to the question at the bottom of the previous page (con-
cerning the All-Knowing’s viewpoint), did any of the management 
team’s interpretations of the data, and did any of the Foreman’s inter-
pretations of the numbers of red beads in the Red Beads Experiment, 
make any sense to the Un-Knowing?  Remember that, though know-
ing nothing about the process itself, the Un-Knowing did understand 
how to interpret a control chart! 
 
All the data are happily contained within the control limits.  The indi-
cation from the control chart is that, as in the Red Beads Experiment, 
this process is stable, in statistical control.  According to the control 
chart, there is no evidence that the point-by-point interpretations of the data as carried out by the manage-
ment team made any sense whatsoever. 
 
But remember, as I emphasised in Pause for Thought 2–a, “these were not real sales figures, and this was 
not a real management team”.  Why did I use artificial data rather than real sales data?  That will now be-
come clear. 
 

As a minor point of detail, notice the thin blue line in the middle of the chart.  This is the “Central Line” 
representing the average of the data-values from which those control limits have been computed.  More 
often than not, people do include the Central Line on their control charts.  Dr Deming did not bother with 
the Central Line when control-charting Red Beads data, and neither did I.  It is nowhere near as important 
as the control limits.   Nevertheless, following common practice, we shall usually include it from now on. 

 
Here I am able to become the “All-Knowing”—because I know where these data originated.  In fact, if you 
happen to have a copy of the second edition of my Elementary Statistics Tables (abbreviated on Day 1 by 
EST) then you might be able to find them for yourself!  For those data are in fact the first ten of the 50 data 
from one of three case studies included there (see EST page 48, Figure 1).  Yes, those data do come from a 
process, though not a sales process.  They come from a process of … throwing dice!  Those ten data are 
the total spots which showed when I threw five ordinary dice.  
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These really were “honest” data—I didn’t keep on throwing the dice until I obtained a sequence which 
would make a good story!  Indeed, it didn’t even occur to me to use these data for such an illustration as 
this until some considerable time after the new edition of EST was published. 

 
Apologies if all this seems to have been something of an elaborate hoax—although I have given you plenty 
of clues that all might not be as it seemed!  There was a very important point for me to re-emphasise fol-
lowing yesterday’s work on the Red Beads Experiment, and this seemed a good way of doing it.  It’s simply 
this: 
  

If your data are typical of what you would get if you were just throwing dice (or using 
some other similarly “random” mechanism), what justification is there in trying to       

interpret individual figures from that process? 
 
Try to argue with this if you will—but, if these data are all that you have, the answer is: none!  And this is 
precisely the kind of sensible conclusion that the control chart encourages you to make, and then helps 
you to make it. 
 
Incidentally, you may have noticed that every control chart you have seen so far has indicated that the rele-
vant process is stable.  Maybe you have begun to think that all control charts show statistical control!  This 
will be immediately remedied at the start of the “Six Processes” section on page 19. 

 
 
 

NB  We have now reached the stage where I strongly advise Stats-level 0 students and, even more so, 
Stats-level 00 students not to work hard at the following pages.  Even higher Stats-level students will be 
hard-pressed to take in everything on these pages at a first reading.  So, really, I definitely recommend 
everybody to spend no more time here than the clock icons advise.  Just get a flavour of what’s here for 
now, and then return to study it more carefully at some time in the future when you start collecting and 
analysing your own real-life data.  The material on pages 13–34 is effectively extra-curricular—it is not used 
anywhere within the course after today.  But I believe it will prove valuable to you when the time comes for 
you to start constructing and interpreting your own control charts. 
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HOW DO WE COMPUTE THOSE CONTROL LIMITS—AND WHY?  
 
Let me remind you of something I told you when first referring to the Red Beads Experiment (Day 1 page 7): 
 

“[Dr Deming] would usually draw up a [control] chart once the results were obtained in his famous 
Red Beads Experiment …  But how?  He would just write down a simple formula, insert some num-
bers obtained from the experiment, and do the arithmetic.  But there was nothing about where the 
simple formula came from nor the fact that, with the large majority of processes, that same formula 
wouldn’t even be appropriate!” 

 
Further, during Technical Aid 1 on Day 2 page 20, my introduction to that method for computing control 
limits was as follows (slightly abbreviated): 
 

“One of the earliest applications of Shewhart’s invention of the control chart was for batch inspec-
tion of mass production processes.  In such inspection, samples (batches) of items from the proc-
ess’s output are regularly drawn and inspected, and the number of defective items recorded.” 
 

Interpreting the red beads as “defective items”, we immediately see that the method for computing the 
limits described there is indeed appropriate for Red Beads data.  But we must be clear that the theory 
underlying that method depends upon 
   
 [A]  Shewhart’s guidance on where to place the control limits 
 
and 
 
 [B]  some particular characteristics of the behaviour of data from batch inspection processes 
 
—both [A] and [B].  Now, [A] is very generally applicable to different kinds of processes that we are con-
cerned with in practice but, of course, [B] is not.  In particular, neither real sales data nor data generated by 
throwing dice match the “batch inspection” model in any way.  Without [B], the “batch inspection” method 
of computing control limits makes no sense, has no relevance.  Instead we need a method which uses [A] 
but does not have [B]—or maybe anything like [B]—available.  So that is surely true for the control limits 
shown on page 11: the data there have nothing to do with “batch inspection”.  Simply stated, we need a 
method for computing control limits which only uses Shewhart’s guidance plus some data from the proc-
ess that we want to study—nothing else: no other information, no other assumptions.  But, in principle, this 
presents a serious logical dilemma.  Why? 
 
As we know, the control limits need to indicate the range over which the data will vary when the process is 
in statistical control: so that, if and when data go outside those limits, we have evidence that the process 
may well be out of statistical control.  That is, of course, quite feasible if the process is in statistical control 
when we collect the data from which the limits are computed.  But that begs the question.  Suppose the 
process is out of statistical control when we collect those data.  Surely that same method is then likely to 
produce control limits which instead indicate the range of the data when the process was out of statistical 
control!  To put it mildly, that’s not much use!  So surely we need to check that the process is in statistical 
control when we collect our data.  But in order to do that we need a control chart.  Ah, but we don’t have 
one yet—that’s what we are trying to produce.  Wouldn’t you call that a “serious logical dilemma”? 
 
So ideally we need a method for producing control limits which indicate the extent of common-cause varia-
tion, whether or not the process is in statistical control during the time that the data are being collected 
from which we shall compute the limits.  That’s a tall order, and there is no perfect solution.  In particular, if 
using the type of methods for measuring variation which are familiar in traditional Statistics (particularly the 
“standard deviation”), the effect of special causes is usually to considerably widen the gap between the 
control limits. That will, of course, destroy the ability of the control chart to detect special causes, effect-
ively making the  chart useless.  
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But there is a better way.  There is an ingenious yet simple approach to substantially reducing the “contam-
ination” effect of special causes on the control limits.  It harks back to a previous section: “The Importance 
of Time” on pages 7–9.  The standard deviation and similar traditional measures of variation pay absolutely 
no attention to the order in which the data are generated (which, recall, is incidentally the same disadvan-
tage as that suffered by histograms).  In fact, if you used them to produce control limits for the data pre-
sented in the “Importance of Time” section, the control limits would actually be so far apart that all the data 
there would be contained well inside them—despite the fact that those data hardly look as if they came 
from a stable process such as in the Red Beads Experiment!  (For if they did then the Foreman would really 
have had something to get excited about!) 
 
So the approach that we use instead measures variation is a completely different way—a way which is 
wholly dependent on the order in which the data are generated.  So let’s be clear about the fundamental 
difference between the two approaches: 
 

• The traditional measures of variation typically focus simply on how far away the values in the data 
are from the average of the data-values  

whereas  
• The method we are now introducing is based on the point-to-point changes in the data, i.e. how far 

away each data-value is from the data-value that preceded it in time-order. 
 
These point-to-point changes, i.e. differences between consecutive values in the data, are known as “mov-
ing ranges”.  Obviously, if many of these moving ranges are large then high variation is indicated; whereas 
if the moving ranges are mostly small then low variation is indicated.  So this is certainly a sensible alterna-
tive method of measuring variation.  But that is a relatively minor point. 
 
The major point is that, in most cases, using moving ranges substantially reduces the “contamination” 
effect of special causes on the control limits compared with using the standard deviation or anything similar 
to it.  Suppose, for example, that a special cause simply raises or lowers the process average and that, 
unfortunately, the numbers used for calculating the control limits include data from both before and after 
that change; the Central Line and control limits are then likely to move quite a lot from where they would 
have been otherwise.  The vital advantage of using moving ranges to compute the control limits is that then 
it’s often the case that the special cause alters the distance between the limits by only a small amount—so 
that the chart retains its sensitivity to detect special causes.  That is not true if using traditional measures.   
 
How does the moving-range method achieve this?  Let’s consider the case where a fault occurs which 
raises the process average from what it was before.  That fault thus also similarly raises all of the subse-
quent data—but not their variation.  That special cause will in fact only affect a single moving range: the 
one starting with the data-point immediately before the special cause occurs.  All the other moving ranges 
are unaffected by the change in process average since they all compare two data-values which were both 
recorded when the process had the original average or were both recorded when the process had the 
raised average.  Thus, other than that one exception, all the moving ranges still continue to reflect the size 
of the process’s common-cause variation.  So the computed control limits will be slightly contaminated by 
the special-cause effect (because of the one exceptional moving range) but usually not to the extent of seri-
ously harming the control limits’ ability to do their job: that of indicating the presence of special causes. 
 
This kind of feature is so important that we’d better study some charts.  Firstly, take a look at the two con-
trol charts, labelled A1 and A2, at the top of page 19.  (Recall that on Appendix page 1 I indicated you would find 
it convenient to print a separate copy of that page.)  I think you will quickly realise that Chart A1 shows a proc-
ess which is in control.  But Chart A2 looks very different.  Amongst other features, four of its 24 points are 
very close to, or outside, the control limits.  Thus there is little doubt that the data shown there come from a 
process which is out of statistical control. 
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The control limits (coloured blue) in those charts on page 19 were computed by the moving-range method 
(in both cases using all of the 24 data-points included on the chart in the calculations).  However, what 
would happen if we were instead to try computing the control limits with the conventional statistician’s 
standard deviation (again using all the 24 data-points on each chart)?  The control limits (coloured purple) 
on the charts that follow are computed using standard deviations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, those purple limits on this Chart A1 (computed using standard deviations) are virtually the same as 
the blue ones (computed using moving ranges) on page 19.  But look what happens to Chart A2 where the 
standard-deviation-type (purple) control limits have been computed from the data there which we have 
already just recognised as coming from an out-of-control process.  They are approximately twice as far 
apart as the ones on page 19!  These limits are totally useless as a criterion for judging whether the process 
is or is not in statistical control.  Why does this happen?  It’s because, just like the histogram, the standard 
deviation totally ignores the order in which the numbers occur in the data—refer again to the remark about 
“the most important information of all” near the top of page 9. 
 
Now, as I said, using moving ranges is not a perfect solution for obtaining control limits that purely reflect 
common-cause variation even if computed when the process is out of statistical control.  A perfect solution 
doesn’t exist.  But using moving ranges works pretty well in mitigating the contamination effects of many 
kinds of special causes.  There are a few exceptions but, now that you know the general idea about how 
the control limits are produced, i.e. using moving ranges, those exceptions soon become relatively easy to 
recognise.  That is why I have included this present discussion here in the main text rather than just in the 
Technical Aids—this is important knowledge for all users of control charts, including those on Stats-level 0.  
Two important exceptions that one needs to be able to recognise are illustrated with data generated in the 
Funnel Experiment, and so we shall see those this afternoon.  But the general success of the moving-range 
method will be amply illustrated this morning in the section which begins on page 19. 
 
Those on Stats-level 0 can now move to that section almost immediately since the remainder of this current 
section consists of some Technical Aids and an Activity in which to use those Technical Aids.  However, 
since most of this afternoon will be spent on the substantial Major Activity of carrying out a version of the 
Funnel Experiment, there will then be no further formal Activities or Pauses for Thought during the rest of 
this morning.  The important “activities” related to what follows this morning will instead be those which 
take place in the future when you start to interpret your own control charts using your own data from proc-
esses that are of interest and relevance to you! 
 
Let me re-emphasise that what follows, all the way up to page 34, is effectively “extra-curricular” as far as 
this course is concerned.  Neither this afternoon’s work nor anything during the rest of this course will 
depend on the content of those pages.  Further, the substantial Optional Extras material that has been pre-
viously mentioned is specifically for those who want to gain both deeper and broader knowledge about 
control charts than is included in the main course, particularly including more technical details.  So that will 
not be suitable for everybody—which is, of course, why it is indeed “Optional Extra”!  By contrast, pages 
19–34 here are focused on helping you to interpret control charts: they are not concerned with more 
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technical matters nor with the actual construction of control charts.  So, although they are optional as far as 
the rest of this course is concerned, I believe you will find them extremely helpful if and when you become 
actively involved in control-charting. 
 
I hope therefore that you will find pages 19–34 interesting to browse through now (so that you get some 
idea of what’s there) but, more importantly, that they will then become ones to which you will return from 
time to time, particularly when you use control charts in your own work and elsewhere.  There is much 
reading and thinking involved during these coming pages.  Please do not expect to take it all in straight-
away today—there’s a lot if it!  Keep a careful watch on my timing-guidance.  This is the one and only 
occasion when I encourage you to just “skim-read” a substantial section of the main course material.  
 
On the other hand, if you find it too difficult to deal with everything in the time that I’ve allotted to these 
pages then there’s no harm done.  When the time comes for you to start working with your own control 
charts then you can return to study at your own pace the guidance given in these coming pages.  However, 
please note that, if you do decide to skip some (or all!) of these pages now, be sure not to miss out pages 
35–37 since they cover essential preparation for this afternoon’s Major Activity and thus are not optional!   
 

 So, if you are on Stats-level 0 (or 00), please omit the following Technical Aids and move on to page 19. 
 

 
 

Technical Aid 5 
 

With Red Beads and similar data, the ! in Shewhart’s guidance for control limits (referred to on Appendix 
page 4) was computed by a formula merely involving the average: X .!   That was possible because, with 
such data, there is a natural link between the average and the way the data vary.  (If the average is parti-
cularly small or large then the variation is relatively small, whereas if the average is more central then the 
variation is relatively large.)  This is not the case with most other types of data, and so then a more direct 
representation of the variation is needed.  As has now been introduced, the recommended method uses 
moving ranges: the distances (positive or zero, not negative)�between consecutive values in the data. 
 

 
 

Technical Aid 6 
 
The artificial sales data on pages 10–12 were, in time order:  13  19  18  14  16  12  21  18  17  22 . 
 
(a) As with the Red Beads data, X!  represents the average of all the data that are being used to compute 

the control limits.  We’ll use all ten of them.  So here we have 
 

X!  =  (13 + 19 + 18 + 14 + 16 + 12 + 21 + 18 + 17 + 22)  * 10  = 170 ÷ 10  = 17.0 . 
 

 This is where the Central Line of the control chart on page 11 was placed. 
 
(b) MR—— represents the average moving range in the data.  In what follows, the moving ranges are shown 

in italics.  Note that the moving ranges are the sizes of the point-to-point changes: there are no minus 
signs involved.  Also note that, with 10 data-points, there are of course just 9 moving ranges. 

 
13    19    18    14    16    12    21    18    17    22 

            6      1      4      2      4      9      3      1      5 
 

So MR——  =   (6 + 1 + 4 + 2 + 4 + 9 + 3 + 1 + 5) ÷ 9 = 35 ÷ 9 = 3.889 . 
 
(c) The control limits are placed at a distance of 2.66 ! MR——  either side of the Central Line.  Here we have 

2.66 ! MR—— = 2.66 ! 3.889 = 10.34, and so the control limits were placed at 17.0 – 10.34 = 6.7 and at 
17.0 + 10.34 = 27.3. 
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Technical Aid 7 
 
Why the 2.66?  Sorry: as with the formula in the Red Beads case, this is more material for the Optional 
Extras.  But trust me: it is derived using the guidance about control limits provided by Dr Shewhart. 
 

 
However, although moving ranges are quick and easy to compute, they can become quite tedious if being 
computed (especially by hand) for a lot of data.  For example, it would be bad enough if we had to compute 
control limits using all the 24 data in the illustration below.  Much worse still would be control limits for the 
data which you will generate in this afternoon’s Major Activity: four lots of 40 numbers! 

  
 

Technical Aid 8 
 

If we want to turn run charts containing a lot of data into control charts, do we have to use all those data to 
compute the control limits? 
 
Fortunately, no.  Sometimes we do use all of the available data to compute control limits retrospectively, 
i.e. when studying past behaviour of a process (as in the following section and also in the Springboard 
article previously referenced).  But otherwise it is more usual and useful to develop a control chart “live”, 
i.e. plotting the points one at a time as and when the data are received.  The normal practice is to 
compute control limits from, say, the first 10 to 15 data-values—or less if the data are received weekly or 
monthly, or if you’re in a hurry to get started!  The length of data used for calculating the control limits is 
sometimes called the “baseline”.  Of greater significance than just the convenience of using fewer data is 
that, obviously, a relatively short baseline can result in special causes being detected earlier than other-
wise.  There is much more discussion about this important matter of short or longer baselines in Part F of 
the Optional Extras section.  There is also some discussion on pages 82–84 in ST, the revised edition of 
my Statistics Tables. 
 
 

 
I’ll illustrate Technical Aid 8 using the first set of 24 data from page 7: 
 

11  10  11  11  12  11  13  13  14  13  14  13  13  15  14  15  15  16  17  16  17  18  17  19 . 
 

Let’s compute the control limits using just the first half of these data, i.e. the first 12 values.  Following 
Technical Aid 6 we firstly compute X ,!  the average of all the data which are being used to produce the con-
trol limits: 
 

11  10  11  11  12  11  13  13  14  13  14  13 . 
 
This is 
 

(11 + 10 + 11 + 11 + 12 + 11 + 13 + 13 + 14 + 13 + 14 + 13) ÷ 12  = 146 ÷ 12  = 12.167. 
 
Then it’s the turn of   MR,

——
 the average moving range in those 12 data.  As before, the moving ranges are 

printed in italics: 
 

11    10    11    11    12    11    13    13    14    13    14    13 
1      1      0       1      1      2      0      1      1      1      1 

 
So   MR

——
 = (1 + 1 + 0 + 1 + 1 + 2 + 0 + 1 + 1 + 1 + 1) ÷ 11 = 10 ÷ 11 = 0.909, and 2.66 !   MR

——
 = 2.66 ! 0.909 

= 2.418.  This puts the control limits at 12.167 – 2.418 = 9.749 and 12.167 + 2.418 = 14.585.  Showing the 
control limits in blue as previously, the control chart is then: 
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This was clearly a case where, in practice, there was little to be gained by producing the control chart: the 
run chart had already told the story of the rising trend.  That’s fine: if the run chart tells you all you need to 
know then don’t bother to upgrade it to a control chart. The control chart becomes really valuable when it is 
unclear as to whether or not the run chart is indicating there are some special causes—which is the more 
usual situation.  

 

 

 
ACTIVITY 3–g 

 
Just for practice, compute the control limits by the method just demonstrated (again using just the first 
12 values) on the data whose run chart you drew in Activity 3–e on page 8.  Here are those data: 
  
  18  19  17  17  16  17  16  15  14  15  15  13  14  13  14  13  13  13  11  11  12  11  10  11 

  
 (Hint: I deliberately chose these numbers to provide easy arithmetic for you—in particular, you should 
find that both X

!
and MR

——
computed from the first 12 values turn out to be whole numbers.) 

 
 
 
 
 
 
 
 

(If you need to check your arithmetic then see Appendix page 15.) 
 
Then insert the control limits on your run chart on page 8.   

 
If you had needed the control limits to help you interpret the data, what would they have told you? 
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SIX PROCESSES  
 
Take an initial look at these twelve control charts:         
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To simplify comparisons, each of the 12 charts was constructed from the same number (24) of data-points 
and in each case the control limits have been computed from all of those 24 values.  You will probably 
guess why I have chosen those particular details.  Yes, one of the processes charted here is the one with 
which you are currently most familiar: a Red Beads process; and those were precisely the details relevant to 
all of yesterdayʼs illustrations.  (This choice of baseline length does not contradict the advice given in Techni-
cal Aid 8 since these analyses are all retrospective rather than “live”.)  
 
Six of these charts indicate that the relevant processes were in statistical control.  The other six charts indi-
cate the relevant processes were out of statistical control.  I think you will easily be able to see which are 
which!  Also, both from the title of this section and the way I have numbered the charts, you will probably 
guess that the 12 charts are formed in six pairs, the charts for each pair both coming from the same proc-
ess.  On the left hand side (Charts A1–F1) the charts indicated that the processes were in statistical control.   
On the right hand side (Charts A2–F2) the data used were recorded when all the same processes had gone 
out of statistical control. 
 
I collected together such a set of twelve charts a long while ago and always found them to be very useful 
for beginning to get my delegates and students used to interpreting control charts.  The charts cover a very 
broad range of types of process; I’ll give you some details a little later on.  But before getting into those 
details, I’ll make some general observations. 
 
One aspect almost immediately noticed by the delegates in my seminars is how control charts of stable 
processes (in statistical control) all look broadly similar to each other, irrespective of what type of proc-
esses they are.  Naturally, Charts A1–F1 differ in detail but they all give the same kind of general impres-
sion.  That should be no great surprise if you recall the description of data from stable processes on page 
12: such data “are typical of what you would get if you were just throwing dice (or using some other 
similarly ‘random’ mechanism)”.  So, in reality, nothing of interest happens in such processes.  In contrast, 
Charts A2–F2 differ in much more than mere detail, reflecting the fact that special causes are affecting the 
way that these processes are now behaving and can do so in all sorts of different ways. 
 
Related to this is that the delegates often pointed out that Charts A1–F1 looked pretty “boring” whereas 
Charts A2–F2 looked relatively “interesting”.  Again, those impressions are not surprising: processes that 
are in statistical control produce data whose general behaviour stays the same.  So no wonder they might 
be regarded as looking “boring”: they are all “much of a muchness”.  Similarly, why do Charts A2–F2 look 
“interesting” rather than “boring”?  Because, in each case, something has (or some things have) happened 
in them—indicated in particular by one or more points lying outside the control limits.  These points warn 
us of real changes, caused by something different from the routine factors which were previously the only 
influences on the process.  Something has changed which results in changed behaviour—usually, in prac-
tice, worse behaviour of the process. 
  
So notice that (at least as far as control charts are concerned!) “boring” is nice!  Charts A1–F1 tell us that 
the processes are in statistical control, stable, predictable.  It is nice to have some idea of what our proc-
esses are likely to produce in the future—the near future, at least, i.e. until something occurs (intentionally 
or unintentionally) to change matters.  The prediction is that, as long as the process stays stable, future 
data will continue to behave in the same manner as they are currently behaving.  To put it mildly, that is 
useful to know!  
 
On the other hand, of course, “interesting” is usually not nice!  Instead it means there are some problems 
that need to be solved.  But at least the control chart may provide some clues which may help us to solve 
those problems. 
 
To see how, let me now tell you what the six processes were and what happened to them. 
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They divide equally into two sets.  The first three are ones where I can again become the “All-Knowing”: 
one is a Red Beads Experiment and the other two are illustrations with dice and tossing coins.  The other 
three are definitely “serious” processes where neither I nor anybody else could claim to be “All-Knowing”. 
 
It is Process C which is the Red Beads process: the data are, as usual, the numbers of red beads finishing 
up in the paddle.  The data for Process A are the total “spots” showing when four dice are thrown.  The 
data for Process B are the numbers of Heads when 25 coins are tossed.  So, similarly to the Red Beads 
Experiment, the dice in Process A and the coins in Process B are respectively thrown or tossed 24 times.   
 
Regarding the “serious” processes, where nobody is “All-Knowing”, the charts for Process D show my 
pulse-rate taken at breakfast-time over a period of 24 consecutive days.  The charts for Process E show 
average measurements in 24 small samples of manufactured cigarette-lighter sockets in a Japanese case 
study.  There will be some detailed description of those measurements on page 32.  Finally, the charts for 
Process F show the monthly United States trade deficits in billions of dollars over a two-year period.  As I 
said earlier, these charts “cover a very broad range of types of process”! 
 
In the case of Processes A–C, the above descriptions apply strictly only to Charts A1–C1.  Clearly, if they 
also applied to Charts A2–C2 then I would have had some difficulty in finding any data which would indi-
cate the processes were out of statistical control!  So in those cases I deliberately introduced some special 
causes.  I will also tell you what I know about the circumstances underlying the data in Charts D2–F2, over 
which of course I had no such direct influence! 
 
For Chart A2, four dice were used in the first six throws as was the case throughout Chart A1.  But only two 
dice were used in the next six throws and then six dice for the rest of the time.   Similarly, Chart B2 began 
by tossing 25 coins as was the case throughout Chart B1, but I increased the number of coins by two each 
time from the 15th point onwards, finishing up with 45 coins by the end of the chart.   
 
However, as you would expect, it was pretty difficult to figure out how to upset the Red Beads data!  All 
I could think of was (for the final six points) to add up the two junior inspectors’ counts rather than to plot 
their common value (sorry—rather feeble, I know!).  So, in that case, it wasn’t the process itself which went 
out of control: it was the process of recording the data that was in trouble.  But that’s also important.  Dem-
ing often pointed out that the measurement process needs to be in statistical control as well.  
 
Moving on to the “serious” processes, you may have noticed that my pulse-rates on Chart D1 were rather 
unhealthily high.  Chart D2 shows my pulse-rates for a later period of 24 days with the final four days show-
ing the effects of a newly-prescribed beta-blocker.  In the Japanese case study, a fault developed during 
the period covered by Chart E2, a fault which was soon more than effectively rectified.  
 
Process F was the only one whose details I have changed from my initial version of the six processes.  
Despite the more than 30 years that have passed since then, it seems to me that the first five processes 
have stood the test of time pretty well.  The original version of Process F consisted, as now, of monthly 
data on US trade deficits.  However the years concerned then were 1988–89 for Chart F1 and 1990–91 for 
Chart F2.  That earlier version of Chart F1 showed stability but Chart F2 showed some temporary insta-
bility, presumably because of the relatively minor recession which officially lasted from July 1990 to March 
1991.  However, because of the antiquity of those data and the considerably more serious international 
financial crisis of 2008, I thought it might be interesting to instead try the US trade deficit figures for 2006–
07 for Chart F1 and 2008–09 for Chart F2.  I was not disappointed!    
 
The Springboard article also includes some discussion on these six processes except that there the earlier 
versions of Charts F1 and F2 are shown.  On page 33 I’ll compare what happens in the two versions. 
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There is yet more to be read from these charts.  However, I shall discuss just one further important issue at 
this stage and then return to these processes later on. 
 
In every case, the in-control chart on the left-hand side of page 19 involved data which occurred prior to 
the data for the out-of-control chart on the right-hand side.  Recall that one of the important interpretations 
of processes being in statistical control is that they are predictable.  To repeat an important sentence from 
page 20, “The prediction is that, as long as the process stays stable, future data will continue to behave in 
the same manner as they are currently behaving.”  This surely implies that, if we have a control chart which 
indicates the process is currently in statistical control, it is sensible to extend the current control limits into 
the future.  
 
There are two advantages of doing this.  First, it saves you time and effort by not recomputing the control 
limits when there is no need to do so.  Second, if a future recomputation of control limits is being carried 
out while the process is becoming unstable, you’ll obviously be spoiling the control chart’s chance of warn-
ing you about that particular problem.  And that’s in addition to the likelihood of widening the control limits 
because of contamination from that special cause.  So the clear “no-brainer” message is to leave the con-
trol limits alone if you have no good reason for changing them! 
 
To illustrate these matters, on page 23 I have constructed Charts A3–F3.  They contain respectively all 48 
data from Charts A1–F1 and Charts A2–F2 but show the control limits from Charts A1–F1 throughout, i.e. 
extended into the future from when the first set of charts ended.  If you compare Charts A3–F3 with Charts 
A2–F2 on page 19 then you will see that the signals of instability are generally stronger, i.e. the relevant 
points are mostly further outside the control limits than they were when the control limits were computed 
using the new data.  
  
Thus note that we have obtained more useful results by doing less work (in this case, by not recomputing 
the control limits unnecessarily).  This is a message that will recur during the Funnel Experiment this after-
noon.  It reminds me of Dr Deming ruing a sad fact which he frequently observed, namely: “people working 
hard, doing the wrong thing”. 
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A FAVOURITE EXAMPLE 
 

Through our study of the “Six Processes” we have already ventured well beyond the mere basics of inter-
preting control charts.  So let’s continue the good work a little while longer. 
 
The example described below is one which Dr Deming frequently showed in his four-day seminars and is 
covered on Out of the Crisis pages 227–228[264–266].  Instead of simply reproducing what is shown in the 
book, I have redrawn a couple of charts based on the information in his account. 
 
The following run chart is based on some inspection data.  Quoting from Dr Deming’s account, it “shows 
the daily record for two months of the proportion defective found on final audit of a product ready to ship 
out.”  It is quite usual, as here, to chart the proportion or percentage of defectives rather than the actual 
number of defectives—the run chart is exactly the same in each of the three cases except for what is writ-
ten on the vertical axis.  Of course, if upgrading the run chart to a control chart then the control limits will 
need to be expressed in the same terms as are used on the vertical scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Would you say that this process is in statistical control?  You might be wise enough to answer that you 
cannot be sure without inserting the control limits to upgrade the run chart to a control chart.  But there 
was a good reason why I haven’t included the control limits here: you might be surprised to know that, 
starting with the run chart as shown above, the control limits wouldn’t fit onto this page!  Take a look at the 
way that Dr Deming drew the control chart of these data with a quite different vertical scale: 
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Yes, be sure that Dr Deming did compute those control limits correctly!  So, in order to produce a reason-
able picture, he did indeed need to use a drastically different vertical scale from that which would normally 
have been used when drawing the run chart.  Not surprisingly, the effect shown in his control chart is often 
known as “hugging the Central Line”.  As soon as Dr Deming saw this “curious condition”, as he called it, 
he knew that there was something for him to find out.  What he discovered was well described by his head-
ing to the story: “Faulty inspection caused by fear”.  His explanation was as follows: 
 

“The inspector was insecure, in fear.  Rumour had it throughout the plant that the manager would 
close the plant down and sweep it out if the proportion defective on the final audit ever reached 10 
per cent on any day.  The inspector was protecting the jobs of 300 people.” 

 
She was “fiddling the figures”!  Could you blame her?  Wouldn’t you have done the same?  Her kind of 
action is sometimes called “sandbagging”.  On “good days” she would set aside some of the good items 
and replace them with some defective ones that she had set aside on a previous day, and on “bad days” 
she would do the opposite.  A similar activity is engaged in by salespeople who need to reach some target 
in order to obtain a higher rate of commission: I’m sure you can suggest some relevant details!  Maybe in 
some companies the inspector would have been fired when the truth was discovered.  But not in this case, 
I believe.  “We reported to the top management our explanation—fear.  The problem disappeared when 
this plant manager migrated to another job, and a new manager came in.” 
 
A control chart may not be able to completely solve a problem.  But it is certainly a great help for dis-
covering when there is a problem to be solved and can often give some pretty useful clues to aid its 
solution.  In this case the solution was not to fire the inspector but instead to kill the rumour. 
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CONTROL CHART + BRAIN 
 
It is now time to revisit the “simplest guidance” that Dr Deming gave on how to interpret control charts 
(near the bottom of Day 2 page 15): 
 

“ … if all the points lie between the two control limits then he would judge the process to be in sta-
tistical control (stable).  Otherwise the indication is that the process may well be out of statistical 
control, and so then it could be worthwhile to try to identify special causes … ” 

 
I also implied that, in practice, it can sometimes be wise not to simply stick to Dr Deming’s basic guidance.  
After all, he didn’t! 
 
The control chart in the “favourite example” covered in the previous section had no points anywhere near 
the control limits, let alone outside them.  Yet, for very good reasons, Dr Deming soon realised that some-
thing was wrong.  These data were not behaving as they would be expected to behave if the process were 
genuinely in statistical control.  Here the points were much too far inside the control limits.  Remember that 
the control limits realistically indicate the approximate range of the data to be expected when all is well.  If 
all had been well then the control limits would have been much closer together so that, for example, the 
control chart would have looked more like the charts A1–F1 on page 19.  As that was clearly not the case 
then he knew there was something for him to discover. 
 
This kind of thinking immediately takes us far away from the idea of interpreting control charts by simply 
and mindlessly following the strict rules of that “basic guidance”.  Rather than acting as if we were “mind-
less”, let’s use our brains.  Rather than simply expecting the control chart to tell us all the answers, let’s 
intelligently combine its guidance with our own judgment and experience.  Indeed, that is precisely what 
Shewhart did when inventing the control chart in 1924!  If you read the “Discussion on the First Paradox” in 
the Appendix, do you remember how he began the sentence which contained his famous recommendation 
for positioning the control limits (at the top of Appendix page 5)?  The sentence began with: “Experience 
indicates … ” [my italics]. 
 
Using our own judgment and experience along with appropriate guidance is surely what we do with any-
thing important in life.  So that is what we need to do when interpreting control charts.  It may not be the 
mathematician’s way.  But it is the practical way. 
 
Before going any further in that direction, let’s focus on a few specific reasons why it makes sense to have 
some flexibility when interpreting control charts as opposed to “mindlessly” just obeying rigid rules. 
 
1.  Just below / Just above 
 
You may recall that the Ford histograms on page 5 showed the positions of Lower and Upper Specification 
Limits.  Deming’s disapproval of judging quality merely in terms of conformance to specifications is shown 
by its inclusion in his list of numerous “Obstacles” (see DemDim page 54).  This particular Obstacle will be 
considered in detail on Day 7.  But the nub of his argument is this:  two things, one of which is just below a 
specification limit while the other is just above it are, in practice, virtually the same as each other.  So what 
is the logic of saying you must accept one and reject the other?  A similar argument most surely applies to 
points on a control chart.  A point which is, say, just above the Upper Control Limit and another which is 
just below that Upper Control Limit represent measurements which are almost equal to each other.  So 
what is the logic in dogmatically deciding to search for a special cause in the one case but not in the other? 
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2.  Control limits are (almost) never the same again 
 
Further weight to the above argument comes from the fact that, even if a process remains blissfully in sta-
tistical control, control limits computed from two different sets of data from that stable process are almost 
bound to be different from each other.  Data vary: thus so will control limits.  So if other control limits are 
computed from different data from that same stable process, the strong likelihood is that the particular two 
points considered in the previous paragraph will now either be both below the new UCL or both above it—
making it even more illogical to act completely differently depending on which of the two you have. 
 

 
 

Technical Aid 9 
 
An important practical point which arises here is that, especially when computing control limits using rela-
tively few data-points (a short baseline), you may occasionally be unlucky with the particular data that you 
finish up with.  Even if the process remains beautifully in statistical control, those data may be untypically 
close together or untypically far apart, with the obvious consequences on the moving ranges and hence 
on the distance between the control limits.  In such circumstances you will hopefully soon become rather 
uneasy about those limits: before long you will begin to feel that subsequent points are either rather more 
volatile than you expected or alternatively show the “hugging the Central Line” effect.  Don’t then be 
afraid to recompute the limits from a larger or different set of data—it’s not “cheating”: it’s good sense!  
This kind of situation is not a frequent occurrence—but it does happen.  This isn’t an exact science. 
 

 
3.  Strength of signals 
 
We have already indirectly touched on the matter of “signal-strengths” when comparing Charts A2–F2 with 
Charts A3–F3 in the “Six Processes” section (page 22).  I pointed out there that the signals of the process 
going out of statistical control were mostly stronger in Charts A3–F3 than in Charts A2–F2; by “stronger” 
I mean that the points were lying further outside the control limits.  The straightforward fact is that, the fur-
ther outside the control limits a point lies, the stronger is its evidence that a special cause is present: it’s 
not simply a case of either yes or no. 
 
4.  Subject-matter knowledge 
 
Obviously, all that the control chart “knows” anything about is how to help us interpret data from a process.  
It knows nothing else.  So, in that sense, it plays the role of the “Un-Knowing” in the Red Beads Experi-
ment.  But sometimes, as we saw, the “Un-Knowing” knows just as much as the “All-Knowing” regarding 
what’s important.  But not always, of course.  Deming was careful to pay due respect to “subject-matter 
experts”.  In contrast, I’ve known teachers of Statistics who seem keen on ignoring subject-matter know-
ledge lest it “bias” the conclusions available from the data.  At the other extreme there are some “subject-
matter experts” who perhaps feel they are “All-Knowing” to the extent that they cannot have anything to 
learn from data!  Both extremes are silly.  Intelligently combining both forms of knowledge makes sense: 
they both have contributions to make.  Good subject-matter knowledge might e.g. mean you would need 
rather stronger signals to convince you to look for a special cause—but not to ignore the data altogether! 
 

It is interesting to reflect again on the artificial sales data (pages 10–12).  It concerned a new product on 
the market.  Surely we would not expect that process to be in statistical control in its early days: we would 
presumably be expecting, or at least hoping for, sales to increase from the starting-point of zero!  So it 
would indeed have been a surprise to see the indication of stability in the control chart on page 11.  But, 
rather than the management team’s almost automatic reactions, maybe it would have been wise to heed 
the control chart’s guidance after all.  Why might sales keep dropping as soon as the promotions stop?  
Maybe it is a system problem.  Maybe the product is of poor quality or too expensive, so that those who 
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buy it during a promotion do not buy it again and also recommend their friends and colleagues not to buy 
it either!  Thus the problem might, after all, be in the system as the control chart indicates, pointing to the 
need to change the system by improving the product or charging a more realistic price.   

 
5.  Control limits are indications, not boundaries 
 
The control limits indicate the range of values over which you would expect the large majority of data to lie 
while the process remains in statistical control.  But that implies there may also be a small minority of 
points lying outside the control limits while the process remains stable!  However, following the above 
arguments, you wouldn’t expect such occasional points to be very far outside the limits.  A solitary point 
which “sticks out like a sore thumb” should almost certainly be investigated.  It might simply be a mistake 
—but it might not.  Investigation is also likely to be appropriate if you start getting points close to one of the 
control limits rather more frequently than usual, even if no point actually goes beyond that limit. 

 
6.  Other indications 
 
There are other types of indications of special causes that can be seen even without the help of control 
limits.  Examples are apparent trends (as we have seen on page 8) or a special cause might simply shift the 
process average up or down (as discussed on page 14).  Another example, particularly if we are dealing 
with monthly data, is some kind of seasonal effect.  You may have noticed that there was a hint of such an 
effect in Chart F1 on page 19 (if so, well done!) but, as it was not large enough to send any points outside 
the control limits, I didn’t mention it at the time.  I’ll comment more on this matter on page 33.   
 
You’ll now be appreciating how experience and relevant knowledge of the subject-matter should come into 
play when judging how long particular suspicious-looking behaviours should continue before deciding to 
look for special causes.  It can even depend on the type of processes being studied: some processes are 
more prone to certain special-cause effects than others.  For example, deciding whether or not to investi-
gate that hint of a seasonal effect in Chart F1 is surely a matter of judgment along with some process 
knowledge.  However, as we saw in Chart F3, those control limits were adequate enough to detect impor-
tant special causes.  All this and more indicates why on Day 2 I likened the wise use of a control chart to 
that of judiciously “bending the rules” as stipulated in a tool’s basic instruction leaflet (rather than just 
obeying the “mindless rule”) as you become more experienced and knowledgable about using the tool. 
 
The “mindless rule” of course has the advantages of being both easy to express and easy to use.  But how 
can we express the wiser approach to interpreting control charts, and what might help us to carry it out in 
practice?  I’ll give you answers to both parts of that question that both I and my delegates and students 
found useful over the years. 
 
Here is my attempt at the first part of the question.  Its nature is of course subjective rather than precise—it 
could not be otherwise: 
 
If all (or almost all) of the data-points are comfortably contained within the control limits, and if there are no 
obvious trends or other patterns visible, then there is no evidence of any special causes affecting the proc-
ess—so there is no point in wasting time and money looking for any.  Otherwise, there may well be. 

 
In the context of the “favourite example” (on pages 24–25), those data-points were of course far too com-
fortably contained between the control limits! 

 
For the second part of the question I’ll simply suggest that you repeatedly refer to Charts A1–F1 (or, to be 
on the safe side, A1–E1).  As I’ve already pointed out, despite originating from a very broad range of proc-
esses, those charts all look rather similar (and boring!).  Suppose you are ready to interpret a control chart 



1/2,3*+"/2./0$4"3."+.&/$"/2$+5,$67//,8$9:;,3.-,/+$

$!"#$%$$&$$'"()"#*$

of your own.  Does it also look quite similar to Charts A1-E1 (apart from fine detail, of course).  Or does it 
look comparatively “interesting”?  If so, how?  Your answers to those questions will become your guidance 
for interpreting your chart. 
 

A contribution to Charts A1–E1 appearing so similar to each other was my choice of vertical scales; they 
were chosen so that the control limits were similar distances apart throughout.  Even this has a precedent 
from Dr Deming’s advice.  At one four-day seminar at which I was present, a delegate asked him for guid-
ance on the choice of vertical scale for a control chart.  After a brief pause, Dr Deming said “I would sug-
gest one which sets the control limits about two inches apart.”  

  
Having just raised the matter of “patterns”, I would like to mention something that my good friend Dr Peter 
Worthington often did near the beginning of some of his seminars.  (Peter has almost certainly presented 
even more seminars on understanding variation than I ever did.)  He asked his delegates to sketch what 
they perceived a run chart of random variation would look like.  
In his own hand, here on the right is the kind of picture that he 
told me they almost always produced:  
 
Peter was then able to point out to them that this is definitely 
not random variation!  Random variation does not have pat-
terns (except occasionally and briefly by a fluke).  This sketch is 
a pattern—it’s a zig-zag pattern: it is high for a while, then goes 
down for a while, then goes up again, then goes down again, 
and so on.  Take another look at the in-control charts on the 
left hand side of page 19—or, for that matter, any of the charts on that page.  Do any of them demonstrate 
such regular up-and-down behaviour?  Of course, there are lots of individual ups and downs, but they do 
not occur in a regular and long-running pattern.  I repeat that, by definition, random variation does not have 
patterns.   
 
Peter has permitted me to repeat what he told me about how this item in his seminars originated: 
 

“Interestingly, the idea came from a comment made by an operator in Michelin [the tyre manufac-
turer] in the carbon black plant (awful stuff—it got everywhere including the coffee vending ma-
chine!).  They had plotted a run chart of the results of an experiment performed on a blend of car-
bon black and, in passing, I heard the remark: ‘That looks random’.  ‘Interesting’, I thought and, 
being nosey, I took a look—and saw wonderful zig-zagging!” 

 
To watch out for “wonderful zig-zagging” is an important lesson to learn because, as e.g. we shall see this 
afternoon during part of the Funnel Experiment, a regular zig-zag pattern is a sign of trouble.  It most cer-
tainly is not what a customer wants to receive from a supplier, whatever the product or service is!  
 
So, in conclusion and following these various arguments, it’s clear that intelligent diagnosis of whether or 
not a process is in statistical control is preferably not just a matter to be decided upon purely by control 
limits: you need to bring your brain into play as well!  The description used several times previously is that a 
process will be diagnosed as in statistical control if the process data cannot be regarded as different from 
what could reasonably be expected if the data were being generated by some kind of random mechanism 
(like the Red Beads or dice again).  So notice the important point that concluding a process is in statistical 
control does not imply any “proof” that it is a purely random process producing “squeaky-clean” random 
numbers!  (Indeed, one could argue that such a process never exists in practice as opposed to in mathe-
matical theory.)  The important consequence arising from concluding that a process is in statistical control 
is simply that there is no logical way you can identify any special causes from the process-data.  In the 
process-improvement context it follows that, rather than searching for special causes, the available ener-
gies and resources should be spent on improving the system—where, after all, there is usually much more 
to be gained (recall the final Shewhart “bare bone” on Day 1 page 33). 
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THE SIX PROCESSES REVISITED 
 
On pages 19–23 I described and discussed how our study of the six processes can help us diagnose 
whether a process is or is not in statistical control.  But it can do more than that.  If it looks as if the process 
is being affected by special causes then the control chart can often give us useful guidance about when 
(and thus often where) to look for them. 
 
So let’s conclude this extra-curricular discussion by examining more closely than previously the second 
halves of the process-data.  I’ll reproduce Charts A3–F3 but now with the points numbered along the hori-
zontal axis in order to aid the discussion.  I have already told you what was happening with these proc-
esses.  But now imagine that I hadn’t told you and that therefore you only had the control charts to guide 
you.  What could they have told you?  Also, imagine that you are developing the charts in real time after the 
halfway stage, i.e. after having computed the control limits from the first 24 data.  Since at that stage the 
charts indicate the processes to be in statistical control, it is sensible to extend those control limits into the 
future and add the next 24 points to the chart one at a time as and when they are obtained. 
 

 
 

 

 
 
Chart A3 is clearly indicating stability up to and including Point 30, but then Point 31 suddenly drops onto 
the LCL (Lower Control Limit).  As recently pointed out, such a point may well occur occasionally even if 
the process remains stable.  However, after seeing the next one or two points again lying near the LCL and 
also clearly lower than any of the first 30 points, there is little doubt that a special cause has occurred 
which has lowered the process average.  It would thus be sensible to try to identify the special cause which 
occurred between Points 30 and 31.  Subsequently perhaps some remedial action was taken after point 36 
which however soon appears to have rather overcompensated for the drop!  From there until the end of the 
chart all but one of the points are above the Central Line, with several points above the UCL (Upper Control 
Limit).  In fact, the first three of these points are all near or above the UCL, and this is already very strong 
evidence that the process average has suddenly moved higher than it was in the initial stable period. 
 
You will see that this interpretation of the chart accurately reflects what we recall was the truth: four dice 
were used for Points 1–30, two dice for Points 31–36, and six dice for Points 37–48.  
 

 

 

 
 
Nothing “interesting” seems to be happening in Chart B3 until around Point 40 which is close to the UCL.  
As in Chart A3, by itself this is only a tiny hint that something untoward may be happening, but that hint 
immediately gets supported by point 41 (also close to the UCL) and then confirmed by Point 42 (virtually on 
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the UCL).  By coincidence, the following two points are both the same as Point 42, but we hardly need 
them to convince us that the process has moved upward.  The remaining points are even higher and so we 
appear to have a trend rather than just a sudden move (as occurred twice in Chart A3). 
 
That again is an accurate interpretation of what actually happened: two extra coins were added every time 
from Point 39 onward.  This was a relatively steep trend and so was spotted soon after it began.  Had the 
slope been gentler then it would have taken a little longer to become confident that it was happening; how-
ever, at that stage one would still be able to trace back to see roughly where the trend began, which would 
help identification of the special cause that was producing it. 
 

With regard to these illustrations using dice, it may be worth my reproducing a suggestion from EST page 
50:  “Such ‘games’ [as in these illustrations] are a fast and effective way to gain experience of constructing 
and interpreting [control] charts.  Work with a colleague.  One of you generates the data, now and again 
unobtrusively changing the process.  The other records the data and draws and interprets the charts.  
You could also try not bothering with the [control] limits, and see how you get on!” 

 
 

 

 
 
There is little to discuss with the Red Beads illustration: you will recall that I contrived to double the record-
ed values for the last six points.  In fact, it looks as if I only doubled the values for the final five points; how-
ever, the first actual count of red beads when I started doing this happened to be only 4, so Point 43 is      
at 8—thus appearing to be just before the special cause occurred.  You can’t expect the chart to be abso-
lutely right all of the time! 
 

 

 

 

 
The control chart of my morning pulse rates shows stability up to Point 44.  That was the day when my 
doctor prescribed the beta-blocker and I took the first tablet straightaway.  My pulse rates on Days 44, 45 
and 46 were respectively 87, 77 and 66 (you can’t really see the 77 on the chart as it’s in the middle of an 
almost straight line).  As you might guess just from the final three points on the chart, the pulse rate then 
settled down to stability at a much more healthy level!  Obviously there is no doubt here as to what the spe-
cial cause was, but I confess I was both amazed and delighted by how fast and how effectively it worked! 
 

This raises a rather obvious question which fortunately also has a rather obvious answer.  Regarding the 
control chart, what do we do now?  This was a good special cause.  It has not harmed the behaviour of 
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the process as do most special causes: it has improved it.  So, of course, we do not try to remove a good 
special cause: we retain it and, if possible, incorporate it into the system (of course, easy enough in this 
particular case).  But since it has changed the system, clearly the current control limits are now redun-
dant.  Thus, after a few more data have been recorded, the obvious thing to do is recompute the control 
limits using data from the changed system and, presuming the changed system is seen to be in statistical 
control, to extend those new limits into the future. 

 
 
 
 
 
 
 
 
 
 
 
 
The data in Chart E3 are taken from an ancient but fascinating case study which Don Wheeler relates in a 
chapter on “Using Process Behaviour Charts for Continual Improvement” in his book with David Chambers: 
Understanding Statistical Process Controlb.  This is how Don introduces the story: 

 
“The … chart was brought to this country by a group of executives from the Body and Assembly 
Division of Ford Motor Company, following a visit to the Tokai Rika Company in March, 1982.  As 
the Ford group was touring the Tokai Rika plant, they observed eight production workers  ‘engaged 
in active discussion’ around this ... Chart.  To the people from Ford, it seemed that something must 
be wrong with the process represented by the chart, so they asked about it.  They expected there 
to be an internal production problem, or an assembly plant problem, or a problem of too many 
rejects.  However, they were told that this was simply a routine review of an ongoing process and, 
in fact, the process was currently operating predictably and was well within the specifications.  To 
substantiate this, their hosts translated the chart, and presented a copy to the Ford group … ” 
 

The control chart (all hand-drawn and several feet long!) covered the period from August 1980 to March 
1982.  The points in Chart E3 are the daily averages of four measurements of the distance between the 
flange and the detent in manufactured cigarette lighter sockets.  The nominal value of this distance was 
15.90 mm with specification limits 15.80 mm and 16.00 mm.  (So take a look at the vertical scale on Chart 
E3—doing well, weren’t they?)  
 
The high point in Chart E3 (Point 36) was for Friday 26 September 1980, and Points 37–41 were for the fol-
lowing week: Monday 29 September to Friday 3 October.  Using the notes in the translation, Don writes: 
 

“ … ‘abrasion on the positioning collar’ is identified as the Assignable [Special] Cause for the proc-
ess excursion noted in late September, 1980 ... in addition to writing down the Assignable Cause on 
the chart they also took action—the very next day the process average shifted back to the target of 
15.90 mm.  Again, a note on the chart tells what was done. 
 As a temporary solution, a worker turned the worn collar over to use the back side.  Two 
days later a new collar was installed.  This incident displays a desire on the part of the Tokai Rika 
personnel to operate at the target.  The process was in no danger of producing nonconforming 
product, yet they took the trouble to fix it so that it would stay centred on the target value of 15.90 

mm.  Moreover, just as the shift on September 29 shows the desire of the workers to operate at the 
target value, the replacement of the collar on October 1 shows the support of the management for 
this policy.” 
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It will probably not have escaped your notice that, as soon as action was taken to prevent further deteri-
oration due to the worn collar, the variability of the data became considerably less than it was in the first 
half of the chart.  The reason for this was not noted on the chart.  Maybe the new collar was of an im-
proved design or made of better material.  Maybe the old collar had already been causing some deteri-
oration earlier on but not enough to produce out-of-control signals on the control chart.  Whatever was 
the case, the Tokai Rika personnel did the obvious thing.  Yes, they recognised the existence of the 
changed system by recomputing the control limits and extending those limits into the future.  Notice how 
wholly irrelevant any consideration of “conformance to specifications” was to how they behaved.  This 
account about the Tokai Rika chart is considerably expanded upon in Part B of the Optional Extras. 
 
 

 
 
 

 

 

Finally, recall that the data in Chart F3 show the monthly US trade deficits for the years 2006–2009.  The 
striking feature is the considerable downward trend following the peak value at Point 31, particularly the 
drop to below the LCL at Point 35, and then the continuing sequence of points below the LCL until the end 
of the chart.  But what was Point 35?  It was November 2008, the first full month after the seriousness of 
the global financial crisis became clearly evident.  Naturally, this caused internal demand to plummet, thus 
considerably reducing imports.  Export figures also fell, but not to the same extent since several of Amer-
ica’s overseas markets were less seriously affected by the crisis.$
Let’s return to the interesting feature observed on page 28 that, rather than being properly in statistical 
control, there was some indication of a seasonal effect during the first two years.  Examining the detailed 
figures over several years, this effect is seen to be real and primarily comes from rather higher and lower 
import figures in the summer and winter respectively.  One could therefore consider switching to using 
“deseasonalised” figures.  However, this seasonal effect is not particularly large and is relatively easy to 
interpret, so there is little harm in continuing to use the raw data.  In fact, this is also consistent with some-
thing that Shewhart taught.  He was keen, whenever possible, to use understandable raw data rather than 
data which have been through some mathematical manipulations that might make them “tidier” in some 
way but less easy to see what they actually represent. 
 
As mentioned on page 21, the Springboard article shows the earlier version of Charts F1–F3.  It is interest-
ing to compare the two versions.  For example, the earlier version of Chart F1 hardly hints at the seasonal 
effect indicated in the later version.  As another example, the two versions of Chart F2 look remarkably 
similar, both showing the considerable decline at the crisis time followed by the partial recovery.  But in the 
earlier case the recovery is shown to be moving back into at least the lower reaches of the pre-crisis sys-
tem whereas, in this later version, the values are beginning to settle down into a region distinctly lower than 
the previous Lower Control Limit—verifying the greater seriousness of the 2008 crisis compared with the 
relatively minor recession in 1990. 
 
Lastly, although we have been using Charts A3–F3 in this discussion, do not forget the importance of 
Charts A2–F2.  These showed control limits which had been computed from the out-of-control data in 
those charts, so that the limits suffered some “contamination” compared with the limits used in Charts A3–
F3.  But recall that, as pointed out on page 22, despite that contamination, pretty much the same conclu-
sions would have been reached with Charts A2–F2 (and at the same times) although the signals are usually 
not quite as strong.  It is well worth re-emphasising the incredibly valuable feature that control charts can 
often do a great job even if their limits are computed when the process is out of statistical control. 

F3100

75

50

25
3             6              9           12           15           18           21           24           27           30           33           36           39           42           45           48



!"#$%$&'$()$!"#*$+&$!,-./0$

$ !"#$%$$&$$'"()"$%"

As you can see, all we have left on this page is a couple of Technical Aids.  So if you are on Stats-level 0 
then please move straight on to page 35. 

  
 

Technical Aid 10 
 

In the way that I set up Charts A3–F3, the control limits had been computed while the processes were in 
reasonable statistical control: thus it made sense to extend those control limits into the future.  But sup-
pose that had not been the case.  Consider, for example, my control chart on page 18.  Suppose I had 
just reached the halfway point where I had available the first 12 data-values and had just computed the 
control limits and drawn the control chart over those 12 points.  Now, although none of those 12 points 
were outside the limits, the indication of a trend was already very strong.  So what would I have done? 
 
I might already be so convinced of the trend that I would start searching for its special cause straight-
away.  Or I might have waited until I had seen two or three further points for confirmation.  The fact is that 
when there is immediate evidence (i.e. as soon as the control limits have been obtained) of the process 
being out of statistical control then there is, of course, no sense in extending those control limits into the 
future.  The process is not predictable—so there is no sense indicating on the chart what the prediction 
would have been if the process had been predictable! 
 
Thus (presuming the process is one over which you have some influence) your need is to try to identify 
and deal with the special cause(s) of whose presence you have now been made aware.  After you have 
taken appropriate action to try to stabilise the process, then (as in the Tokai Rika case study, Process E) 
you would resume recording data and, in due course, recompute the control limits.  You are thus “back to 
Square 1”: extending those control limits into the future if the process is now in statistical control or else 
resuming your search for special causes if it isn’t. 
 
Notice that if, as in the Tokai Rika case study, the action you have taken has not only removed the special 
cause but has also reduced the common-cause variation, it is quite possible that further special causes 
may become visible on the chart.  The narrower control limits may now reveal special causes that were 
already there but had been camouflaged by the previous greater amount of common-cause variation. 
 

 
 

Technical Aid 11 
 

Finally, here are four “tidying-up” points. 
 

(a) Besides the Red Beads Experiment (Process C), Process B (counting the number of Heads when 25 
coins were tossed) also fits the “batch inspection” conditions (see page 13).  So the method used for 
computing the control limits for Process B was the same as for the Red Beads Experiment except 
with n = 25 instead of 50.  The moving-range method was used for the other four processes. 

 
(b)  The control limits for all six processes were computed from 24 data.  As mentioned earlier, this num-

ber was chosen simply because that was what we were used to using for the Red Beads Experiment. 
However, remember that for “live” charts a shorter baseline is recommended (Technical Aid 8 on 
page 17).  

 
(c) If you refer to Dr Wheeler’s own account of the Tokai Rika case study, you may notice that the control 

limits used in Charts E1 and E3 are different from the original.  This is because the control limits used 
here were computed from the first 24 data-points on the Tokai Rika chart given to the Ford personnel.  
It is unclear from the account when Tokai Rika’s control limits were computed, but it was probably 
before the beginning of the chart as we have it. 

 
(d) There is a further illustration of the moving-range method on page 9 of the file “Q. Contributions from 

Balaji Reddie”.  
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INTRODUCTION TO THE FUNNEL EXPERIMENT 
 
One more time.  Dr Deming warned us that 
 

“if we wade in at [problems] without understanding, we only make things worse.  This is easy to 
prove.”  

 
As with the Experiment on Red Beads, the Funnel Experiment may just look like a rather silly game when 
you are introduced to it.  Hopefully, like the Red Beads Experiment, I think that before long you’ll realise it’s 
rather more than that. 
 
As we know, the Funnel Experiment was created by Lloyd Nelson and subsequently described and dis-
cussed by Dr Deming in his four-day seminars.  But, unlike the Red Beads Experiment, it was not actually 
carried out in the four-day seminars.  There was a good reason for that.  In the form suggested by Dr Nel-
son, it is only feasible to carry it out for real either individually or in small groups—not the several hundred 
at a four-day seminar!  In that original form, you need: 
 

• a funnel,  
• a marble which is small enough to pass through the funnel,  
• a table, exactly horizontal and covered by a thick tablecloth …  
• … on which is marked a target-point—this is where (in our silly game!) we would ideally like the 

marble to come to rest after being dropped through the funnel and bouncing or rolling around on 
the tablecloth,  

• a portable stand on which to fix the funnel at some convenient distance above the table and which 
can then easily be moved to different positions on the table,  

• a ruler to measure how far the marble is off-target and a protractor to measure angles,  
• —oh, and permission to record the resting-places of the marble on the tablecloth with a marker-

pen! 
 
Believe me—my version is easier to perform and also results in less laundry costs!  Basically, it’s a one-
dimensional version of the experiment, whereas the Funnel Experiment itself is two-dimensional.  I.e., this is 
a “flattened” version of the Funnel Experiment where both the funnel and the marble can only move either 
to the left or to the right (one dimension) rather than anywhere horizontally (two dimensions) in the original 
version.  A further advantage is that, unlike with the original version, we will now be able to analyse data 
produced in the experiment using tools we already know about: histograms, run charts and control charts.  
That would be, to put in mildly, rather more difficult with two-dimensional data! 
 

There will be four strategies to examine during the Funnel Experiment.  To save time I shall just ask you to 
construct histograms for the first two strategies and run charts for the other two.  I shall return to the Fun-
nel Experiment in Part A of the Optional Extras section where I will also show control charts in operation 
on data from the experiment.   

 
So, in our one-dimensional version, imagine we have two tracks both like the following: 

 
 

 
 
with one track suspended some distance directly above the other.  (You will notice that the central number 
30 is coloured differently from the others: 30 is the “target-point” in our silly game.)  The funnel’s track is 
the higher one: it has a hole in the middle of each square so that the funnel can be suspended at any 
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numbered position.  The marble’s track is the lower one: the sides of the numbered squares are rigid but 
the insides of the squares are made of some elastic material.  So the general set-up is that (a) the funnel 
can be placed at any position on the higher track and (b) the marble can then be dropped through it onto 
the lower track where it will briefly bounce around and then finish up in one of its squares—possibly directly 
under the funnel or, more usually, displaced by one or more squares to the left or right.  To complete the 
image we should join the two sides of the top and bottom tracks by vertical sheets of glass or transparent 
plastic to prevent the marble bouncing off its track but so that we can still observe what’s happening!  
 
However, you don’t have to build that whole model!  During the description I shall show the positions of the 
funnel and marble along their tracks by little icons on a single track.  So, for example, if the funnel is at 
position 31 and, after being dropped through the funnel, the marble bounces around and finishes up at 
position 33 then I shall show this as: 
 
 

 
 
So how exactly will you be able to carry this out with your less extravagant set-up (of which details follow)? 
  
In our timing schedule we are now coming up to the lunchtime break.  If you have not already done so, you 
will now need to prepare your own track like the one illustrated in order for you to be able to carry out our 
version of the Funnel Experiment, ready to use when we resume this afternoon.  On page 59 you will find a 
larger copy of the track in two parts, one part going from 20 to 30 and the other from 30 to 40.  Preferably 
(but only if convenient) I suggest that you copy or paste these (either electronically or using glue!) onto 
some card.  Then join them together into a single strip as shown above by attaching the two 30s one on 
top of the other.  I’ve also included on page 59 larger images of both the funnel and the marble: you could 
similarly put the image of each that you choose onto small pieces of card to use in the experiment.  Alter-
natively, you could e.g. use a large silver coin to represent the funnel and a small copper/bronze coin to 
represent the marble. 
 
Finally, as previously warned (on Day 2 page 44), you will also need two standard dice (and a shaker if you 
so wish!). 
 
Then, fully equipped, you will be ready to carry out our version of the Funnel Experiment.  When you begin, 
I recommend that you work through the first few pages of the Major Activity quite slowly and carefully since 
they will lay the foundations of how you will be spending most of the time this afternoon. 
 
NB  There will be no separation between Stats-level 0 and Stats-levels 1–3 this afternoon, and so then the 
timing guidance will only be included on the right-hand side rather than on both sides as during this morn-
ing.  
 

If you are particularly numerically inclined, you could conceivably carry out this experiment without using 
the track: you might instead be able to visualise what is happening on the track by just interpreting the 
numbers which will develop.  However, I believe most people will find it easier to actually see what is 
going on, at least in the early stages of operating the various strategies to be studied during the experi-
ment.   
 
But once you have become familiar with any particular strategy then you may soon find you can carry on 
without continuing to use the track.  Use it for as long as you personally find it useful to do so and then, if 
you prefer, don’t bother with it any more.  However, since I have worked through this entire Major Activity 
many times, you may find my own experience to be useful here.  I soon found that it was definitely safer 
to use my track throughout every stage of the first strategy, since it is actually the trickiest of the four to 
carry out.  I also worked with the track throughout the third strategy before realising that there was a 
useful and simple short-cut (which I’ll show you).  I used the track for a little while with the fourth strategy 
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but soon found that I didn’t need it any more.  The second strategy is the simplest of all, and there I hardly 
needed the track at all.  I shall reflect the relative ease or difficulty of the various strategies in my timing 
guidance. 
 
Your version of the track going from 20 to 40 will be sufficient for much of the afternoon.  However, espe-
cially later on, you may occasionally need extensions outside that range.  If so then you will find them on 
page 61. 
 

NB  Just In case you really cannot find any dice to use then I have provided below a couple of sample 
sequences of dice-throws for you to choose between and use instead.  Note that both of these sequences 
begin at Stage 6: I’ll be providing the first five stages for you this afternoon when I shall use them for dem-
onstration purposes. 
 
 
Stage 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Seq. A 6, 4 2, 4 4, 5 4, 5 1, 3 5, 6 6, 3 3, 5 6, 4 3, 5 2, 2 5, 2 4, 2 2, 4 6, 6 4, 6 5, 3 4, 3 
Seq. B 3, 5 3, 6 4, 4 1, 3 1, 1 4, 1 5, 3 1, 6 4, 5 1, 2 5, 4 1, 4 6, 1 1, 2 1, 3 5, 4 6, 5 6, 1 
 
 

Stage 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
Seq. A 2, 5 6, 3 5, 6 6, 3 5, 1 6, 1 2, 1 2, 2 3, 6 5, 3 6, 6 5, 3 4, 6 6, 5 3, 4 3, 6 5, 6 
Seq. B 4, 3 6, 6 1, 5 6, 3 4, 4 5, 2 4, 4 1, 4 6, 1 3, 2 5, 5 5, 6 6, 2 1, 3 4, 6 6, 3 3, 1 
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Before we begin, a few words about the nature and purpose of the Funnel Experiment, some of which you 
will recognise as having been just as relevant to the Red Beads Experiment.  As there, sooner or later it will 
become obvious to you that some of the strategies used and actions carried out are, depending on the 
circumstances, rather foolish!  But that is precisely what’s intended.  Both experiments are very simple—so 
simple that the difference between good and bad practice becomes plain for all to see.  However, after the 
Funnel Experiment had been presented, both Dr Deming in his enormous seminars and I in my smaller-
scale ones would then ask the delegates to tell us of examples of what had now become clear to them as 
costly and damaging bad practices in their own lives, their own experience, their own workplaces, their 
own organisations.  And invariably the delegates would come up with dozens of such real-world examples 
analogous to the bad practices of which they were now aware through what they had just learned from the 
Funnel Experiment.  Often they had carried out such practices themselves—not because they were bad 
people but because they hadn’t previously realised that the practices were so bad.  Now they did.  Thus, as 
with the Red Beads Experiment, the purpose of the Funnel Experiment is to alert you to the truth of such 
matters, so that in future you will be able to figure out more successfully what is good practice and what is 
not: what to do and what to avoid.  As you go through the experiment, when similarly you think of practical 
examples in your own experience of what the Funnel Experiment is teaching, make a note of them since 
they will be of help when you get to today’s final Activity. 
 
It is easy to think of real-life illustrations of the Funnel Experiment in many contexts.  For example, consider 
my school bus again.  Suppose the bus driver (who actually was my uncle!) was really keen to arrive at my 
bus-stop at exactly 8.30 am—which thus became his target.  How might he use past experience to help 
him do that?  Or we could think in terms of a manufacturing process.  Suppose the nominal width of a 
socket, made by injection moulding, is 2.30 cm.  How might one use information about past measurements 
of such sockets to try to manufacture future sockets closer to the nominal value? 

 
 

 
 
With reference to the two illustrations just mentioned, the numbers on the funnel’s and marble’s tracks can 
relate to minutes in the case of the bus arrival time and tenths of a millimetre for the width of the socket.  
So the “target” of either 8.30 am or 2.30 cm is represented by 30 on the track, while the 29 refers to 8.29 
am or 2.29 cm, 31 to 8.31 am or 2.31 cm, 34 to 8.34 am or 2.34 cm, etc.   

 

The First Two Rules of the Funnel 
 
An obvious way to attempt to improve results from a process is to compare the current outcome (today’s 
bus arrival time or the width of the socket just manufactured) with the nominal or target value, a compari-
son which may suggest an adjustment to try to improve the next outcome.  In our “flattened” version of the 
Funnel Experiment, this adjustment will be represented in what follows by the movement of our funnel 
along its track—to the left if we want to try to make the next outcome respectively earlier or smaller, or to 
the right if we want to make it later or larger.  Thus, if the bus arrives today at 8.33 (three minutes late), 
perhaps the bus driver should set out three minutes earlier tomorrow.  (I am assuming that my uncle is keen 
to please me rather than anybody else!)  Or, if the socket just made measures 2.33 cm (0.03 cm too wide), 
we can adjust a control on the machine to reduce the average diameter of future sockets by 0.03 cm.  In 

MAJOR ACTIVITY 3–h
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either case, the equivalent movement of our funnel is a distance of 3 squares (minutes or tenths of a milli-
metre, etc—whatever units we are using) to the left along its track.  Thus we compensate for the amount 
that the current outcome is off-target by moving the funnel by that same amount in the opposite direction.  
This type of compensation strategy is in fact the second of what both Drs Nelson and Deming referred to 
as the four Rules of the Funnel.  Here we are demonstrating it first because it corresponds to what was 
happening first in the Ford example on page 5.  We shall introduce the other three Rules in due course. 
 
Whatever is tried, the fact remains that different things (be they bus journeys, manufactured sockets, or 
anything else) are almost always different!  This is because, as we are now well aware, all processes have 
their common-cause variation as well as possibly some additional special causes of variation.  
 
With the equipment as described, when the marble is dropped through the funnel it will finish up either to 
the left or right of the funnel or sometimes directly underneath it.  There is no need to use anything very 
complicated to model the variation between the funnel’s current position and where the marble finishes up.  
Anything reasonable will produce the main messages to be learned from the experiment.  So that’s why 
you have your two dice.  You’ll throw the dice and add up the two numbers showing: let’s call that the 
dice-score.  Since the faces on the dice range from 1 to 6, obviously you will get a dice-score of between  
2 and 12.  Then use the dice-score in conjunction with the following little table to decide where the marble 
finishes up relative to the funnel’s current position.  Thus e.g. if you throw two ones, so that your dice-score 
is only 2, you place the marble 5 ( = 7 –  2) squares to the left of the funnel’s current position.  Or if you throw 
a 3 and a 5, with dice-score 8, then you place the marble one ( = 8 – 7) square to the right of the funnel. 
 

Dice-score   2 3 4 5 6 7 8 9 10 11 12 

     relative to  5 left 4 left 3 left 2 left 1 left Under 1 right 2 right 3 right 4 right 5 right 
  
From now on I shall use the colour-coding in this little table to help you find your way around: the funnel in 
blue, and the dice-score in brown.  The marble’s position (and thus the outcome or result) will be in red.  
 
In this example, since of course the preferred outcome is always that target of 30 (corresponding to the bus 
arriving at 8.30 or to a socket diameter of 2.30 cm), you may as well start by putting the funnel at what 
would appear to be the “obvious” position, i.e. 30: 

 
 

 
 

 
You throw your dice.  If you are fortunate enough to get a dice-score of 7 (e.g. by throwing a 2 and a 5), the 
table shows that the marble finishes up directly under the funnel—dead on target!  
 
 
 
 

 
But suppose you’re not that lucky.  Perhaps your dice fall as a 6 and a 4, giving you a dice-score of 10.  
Then the table shows that the marble finishes up 3 squares to the right of the funnel, i.e. 3 to the right of 30 
giving 33—that’s 3 too big.  What a pity!   
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So let’s try to make the next outcome a little smaller, to attempt to get it closer to that target value of 30.  
That was indeed the “logic” behind what was happening at Ford.  As discussed earlier, according to Rule 2 
(which, recall, was Ford’s First Strategy) the bus driver would then leave the depot 3 minutes earlier tomor-
row, or we would adjust the control on the injection moulding machine down by 0.03 cm.  So equivalently 
you move the funnel by 3 squares to the left along its track, i.e. from 30 to 27.  (From now on I shall not 
keep referring directly to those two illustrations, as otherwise the description will become very lengthy.)   

 
 

 
 
 
A particularly appealing way of considering this strategy (i.e. Rule 2 of the Funnel) is that it tells you to move 
the funnel to the position (27) where, if only it had been there when the marble was just dropped through it, 
you would have just obtained the preferred target outcome of 30!  With the funnel placed there, the dice-
score of 10 led you to move the marble 3 squares to the right of the funnel; so you would then have had: 
 
 
 
 
 
Now, in order to record the progress of Rule 2 in an organised fashion, both to study its behaviour and, 
later on, to compare it with the other three Rules of the Funnel, you will need to carry out some systematic 
book-keeping!  So let me get you started with your own track and whatever you are using for your funnel 
and marble.  I’ll use our familiar symbols for the funnel and the marble, and also      for the target (30 in our 
illustrations). 
  
We’ll use my own dice-scores to start with so that you can follow my illustration exactly: you’ll be able to 
start throwing your own dice very soon!  Work through these demonstration stages carefully on your own 
track so that you can be sure about what to do when I leave you on your own.  Take it steadily at first—
remember (as my mother used to tell me!): “more haste, less speed”. 
 
The first stage as just described was as follows: 
 
 To start with, ... Stage number 1 
 ... as suggested, put the funnel at 30                        starts at 30 
 
 
 
 
 
 Suppose your first throw of the two dice produces 6 and 4 Dice-score = 10 
 From the little table, this means the marble finishes up:   3 to the right of   
 So the marble finishes up at 30 + 3  =  33 is at 33 
 
 
 
 
 
 Since 33 is 3 to the right of the target 30 …  Since      is 3 to the right of     , 
 … you move the funnel by the same amount in the opposite direction move  3 to its left 
 Thus the funnel is now at 30 – 3 = 27   is at 27 
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At Stage 2, it’s the same operation except with the funnel starting at its new position of 27.   
 
 
 
 
 
You throw the dice again, and suppose this time you get a 3 and a 5. 
 
 You are now at ... Stage number 2 
 The funnel is at 27  is at 27 
 Your second throw of the two dice produces 3 and 5 Dice-score = 8 
 From the little table, this means you put the marble: 1 to the right of  
 So the marble finishes up at 27 + 1  =  28 is at 28 
 
 
 
 
 
 
 Since 28 is 2 to the left of the target 30 … Since       is 2 to the left of     , 
 … you move the funnel by the same amount in the opposite direction   move  2 to its right 
 Thus the funnel is now at 27 + 2 = 29   is at 29 
 
So here we are at the start of Stage 3: 
  
 
$
 
 
 
In Stage 3, suppose your throw of the dice produces two 3s.  Using your marble and funnel on your track, 
check that you agree with the following details: 
 
   is at 29 
  Dice-score = 6 
   goes 1 to the left of  
  is at 28 
 
 
 
  
 
 
Ah, but that’s exactly where Stage 2 had left it!  The fact that the marble is at 28 again is, of course, a coin-
cidence.  The marble is there this time for entirely different reasons from the previous time: different posi-
tion of the funnel and different dice-score.  
 
  Next, since       is again 2 to the left of     , 
  again move  2 to its right 
    is at 31 
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At Stage 4 suppose your two dice produce 1 + 6 = dice-score 7 and at Stage 5 they produce 3 + 1 = dice-
score 4.  Working as before, the book-keeping so far can be summarised as follows.  To save space I am 
now abbreviating e.g. “3 to the right” by 3R and also indicating “marble directly underneath the funnel” by 
!.  Now, using your track, carefully check through all these initial stages.  Start again from the beginning to 
get into the swing of it!  Then continue through the two new stages.  
 

Stage number 1 2 3 4 5 6 

 is at 30 27 29 31 30 33 

Dice-score = 10 8 6 7 4  
 

From ,       then goes 3R 1R 1L ! 3L  
 

Outcome:       is at 33 28 28 31 27  
 
       3R 2L 2L 1R 3L  

… you move the funnel  3L 2R 2R 1L 3R  

 27 29 31 30 33  

 
One case which hasn’t occurred during these first five stages is where the marble finishes at 30, i.e. exactly 
on-target.  In that case, Rule 2 simply leaves the funnel where it is.  So when this happens I suggest you 
write  "  in the “As      relative to      is ...” row to indicate that the marble is bang on target, and also put a 
dash —  in the “… you move the funnel” row to indicate that then you don’t move it! 
 
OK, over to you—throw your own dice from now on!  Continue the experiment through a total of up to 40 
stages.  Have patience—as mentioned earlier, this is by far the trickiest of all the four strategies to carry 
out: you’ll be able to work through the other three much more quickly.  (Keep an eye on my timings though: 
if you get short of time then be content with fewer stages.)  For your convenience, I have reproduced below 
the little table which shows you how to interpret your dice-scores. 

 

Dice-score   2 3 4 5 6 7 8 9 10 11 12 

     relative to  5 left 4 left 3 left 2 left 1 left Under 1 right 2 right 3 right 4 right 5 right 

 
The table in which to develop your data is on page 44 [WB 38–39].  On page 45 I shall then help you to 
construct your histogram.  If you are using the Workbook, after completing the table there then return to 
page 45 here for advice on forming your histogram before returning to Workbook page 39.  
 
NB  Looking ahead, you will see on page 46 that I shall advise you to use the same sequence of dice-
scores in all four parts of the experiment.  This is both to save time and also because it is interesting to see 
how the four Rules of the Funnel produce noticeably different behaviours using that same sequence of 
dice-scores—in particular, you will then know that the different behaviours do result from the differences 
between the Rules rather than from different sequences of dice-scores. 

So  is now at
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Of course, to carry out that advice could involve the annoyance of a lot of page-turning!  So, to avoid that,  
I suggest it would make sense (if convenient) for you to take a copy of the first table as soon as you have 
completed it.  Alternatively, again if convenient,  you could simply temporally detach the table from your 
binder.  In case neither of these alternatives is convenient, you will still be able to avoid the repeated page-
turning by carrying out a little manual copying from the table.  I’ll show you the best way to do this in the 
paragraph following the table on page 46. 
 

Suggestion:  If you are working in a small group rather than on your own, I suggest that each of you pro-
duce your own data.  You can learn a great deal by comparing your different sets of results to discover 
which features are similar to each other and which are not.  However, particularly if you are studying on 
your own, there are two runs of the whole experiment summarised in the Appendix for you to compare 
with your own results.  Do your own experiment first though! 

 
So off you go to Stage 6 on page 44 [WB 38]. 
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Stage number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 is at  30 27 29 31 30 33         

Dice-score = 10 8 6 7 4          

 3R   1R 1L ! 3L          
 

Outcome:       is at 33 28 28 31 27          

 3R 2L 2L 1R 3L          

… you move the funnel 3L 2R 2R 1L 3R          

 27 29 31 30 33          

  

Stage number 15 16 17 18 19 20 21 22 23 24 25 26 27 

 is at              

Dice-score =              

                
 

Outcome:      is at              

              

… you move the funnel              

              

 
 

Stage number 28 29 30 31 32 33 34 35 36 37 38 39 
 

40 

 is at              

Dice-score =              

                
 

Outcome:      is at              

              

… you move the funnel              

              

 
 
 
 
 

So  is now at

So  is now at

So  is now at
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Finally, summarise the outcomes that you’ve just generated in a histogram.  The “outcomes” are the resting 
positions of the marble, i.e. the positions of     in the yellow-shaded rows in your table.  However, now that 
you have as many as 40 data-values to include in the histogram, we need to think more carefully than 
before about what would be an efficient way to produce it. 
 
To construct a histogram, most people find it effective to first produce a “tally chart”.  Here’s how.  With 
data such as those you have just produced, write down all the different values you’ve obtained as a column 
(see on the left below).  Then trace through your data and at each value write a mark    against the appropri-
ate number in the tally chart.  So, after you’ve seen a particular number four times, you will have written       
against it.  But if and when you reach the fifth occurrence of that number you instead draw a line through 
the previous four marks: .  For future occurrences of the same number you again write single marks until 
you reach the tenth, at which time you do the same as at the fifth; so you’ll then have written    
against that number.  After you’ve completed doing this it will then be quick and easy to add up the totals 
and hence draw the histogram. 
 
So suppose that, after you’ve been through your 40 values, you’ve finished up with the tally chart shown  
below.  It will then take very little time to produce the totals (in blue) and hence construct the histogram as 
shown on the right.  Be reasonably neat, but there’s no need to be too precise—freehand will do.  No need 
to find a ruler! 
 
            Tally chart       Histogram 
 
  27        1 
  28      8 
  29      7 
  30      8 
  31       4 
  32      6 
  33       4 
  34         2 
 
 
So now please carry out this same operation using your own values of     (including my first five values) 
from the yellow-shaded row in your book-keeping table on page 44 [WB 38–39].   
 
 

 

Tally chart        Histogram 
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 9
 8
 7
 6
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I’ll postpone discussion on the outcomes from this strategy (which you’ll recall is what Drs Nelson and 
Deming called Rule 2 of the Funnel) until you’ve repeated the whole exercise using an easier strategy. 
 
In contrast to Rule 2, let’s now be relatively idle by simply putting the funnel at 30 and leaving it there, irres-
pective of the outcomes, i.e. of where the marble finishes up.  This strategy, which is Rule 1 of the Funnel, 
is of course equivalent to the Ford personnel switching off their automatic compensation device (which was 
their Second Strategy).  So you’ll have some idea about what to expect in what follows!     
 

 

As suggested on page 42, I recommend that you don’t bother to throw your dice any more but just use the 
same dice-scores as you obtained the first time.  I mentioned two advantages of doing this on page 42. 
 
In this case where you don’t move the funnel at all, you may be able to stop using the track almost straight-
away.  As I’ve just said, you simply put the funnel at 30 and leave it there.  Referring back to my original five 
dice-scores which were 10, 8, 6, 7 and 4, these corresponded respectively to the marble finishing up          
3 right, 1 right, 1 left, directly under and 3 left of the funnel.  So, with the funnel stuck at 30, you can imme-
diately see that the marble finishes up at 33, 31, 29, 30 and 27 respectively:  
 

Stage number 1 2 3 4 5 6 

 is at 30 30 30 30 30 30 

Dice-score = 10 8 6 7 4  
 
     3R 1R 1L ! 3L  
 

Outcome:       is at 33 31 29 30 27  

 is still at 
 

30 
 

30 
 

30 
 

30 
 

30  

 
Note that, since we’re using the same sequence of dice-scores as before, we’re also bound to repeat the 
identical sequence of moves in the “From    ,      then goes” rows (my moves are in green) from page 44 [WB 
38–39].  So we won’t even need to include the rows of dice-scores in the remaining tables!  If it isn’t con-
venient for you to make a copy of the table on page 44 [WB 38–39]) or detach it from your folder, the 
sensible way to carry out some manual copying to minimise the amount of page-turning is to copy the 
sequence of the “From    ,      then goes” moves (3R, 1R, 1L, !, 3L, ... ) from your first table onto a separate 
sheet of paper and then to copy that sequence straight into the new table on page 47 [WB 40]).  Further-
more, also remember to do this first when you tackle the remaining two Rules (on pages 50 and 54 [WB 42 
and 44] respectively).  Alternatively, why not do it right now in all three cases so that you don’t have that 
chore waiting for you later on! 
 
As you can see, with Ford’s Second Strategy (Rule 1) you also no longer need the two rows which were 
under each yellow-shaded row in the Ford’s First Strategy (Rule 2) version of the book-keeping (see page 
42 and then your table on page 44 [WB 38–39]): they were only there to work out where that strategy (Rule 2) 
would move the funnel.  Now, of course, the funnel stays put at 30.  So, with everything being so much 
simpler than before, I think you’ll find it very easy to do the book-keeping this time! 
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Stage number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

 is at 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

 3R   1R 1L ! 3L          
 

Outcome:       is at 33 31 29 30 27          

 
 

Stage number 15 16 17 18 19 20 21 22 23 24 25 26 27 
 

 is at 30 30 30 30 30 30 30 30 30 30 30 30 30 

                
 

Outcome:       is at              

 

Stage number 28 29 30 31 32 33 34 35 36 37 38 39 40 

 is at 30 30 30 30 30 30 30 30 30 30 30 30 30 

                
 

Outcome:       is at              

 
So now summarise your new data in a histogram as before.    
 

Tally chart        Histogram 
 

 
 
 
 
 
 
 
 
 
 
 

Discussion 
 
Compare the two histograms you’ve drawn on pages 45 and above [WB 39 and 41].  As you’ll probably have 
realised already, the histogram that you’ve just constructed is somewhat more tightly clustered around the 
desired value of 30 than the previous one was.  The difference may not be dramatic, but it’s certainly there.  
So this process performs better than the previous one: there is less variation.  Yet this process was the 
“lazy” one.  It is much less complicated, much quicker and easier to operate.  With this strategy (Rule 1) we 
haven’t “tweaked” the process at all.  We’ve put in less effort—and got better performance!   With Ford’s 
original strategy (Rule 2), we worked harder but got worse performance.  Some people seem to think that 
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there’s a kind of rule of life stating that the harder we work, the better are our results.  But, as Dr Deming 
often pointed out, it’s better to do nothing than to do the wrong thing!  He was definitely an advocate of 
“Work smarter, not harder”!  (See the 10th of the 14 Points on Day 5 page 8 [WB 76].) 
 
I asked you a question in Activity 3–c (page 6 [WB 33]) about the Ford automatic compensation example.  
Hopefully, you will now understand why I promised you would be able to answer that question before com-
pleting this Major Activity.  Unless you produced a very peculiar set of scores from throwing your dice, you 
should see some similarities between the two histograms you’ve just drawn and the histograms which 
came from the Ford example on page 5—not in detail, of course, but broadly in terms of comparing one 
with the other.  As there, the first histogram is more widely spread out than the second one, showing that 
the harder work (and, in Ford’s case, the extra expense of the automatic compensation equipment) actually 
increased the variation—making things worse, as Dr Deming pointed out. 
 
So, to summarise, we have just seen that it is Rule 1 of the Funnel which has produced the better results.  
It was the original strategy, Rule 2, which produced the poorer results.  The statistician’s advice to Ford 
(middle of page 5)  was indeed wise.    
 
Let’s now move on to ... 

 

Rules 3 and 4 of the Funnel 
 

The motivation for the various Rules of the Funnel is discussed in !DemDim Chapter 5, so there is no need 
for me to go into great detail here.  The important issue here is how well they work.  So I’ll summarise the 
motivations for Rules 3 and 4 quite briefly.  Firstly, Rule 2 was a relatively complicated operation—you 
might have had to concentrate quite hard to get it right.  Rule 3 is a rather easier and (at least at first sight) 
an apparently rather innocent variant of Rule 2.  Rule 4 is quite different from both of them: it concentrates 
on trying to minimise the average short-term variation.  The latter is, of course, an interesting mixture of 
good and bad.  It is certainly good to reduce variation, but is it wise to do so only in the short term?  Let’s 
carry out similar procedures as previously, but now for Rules 3 and 4, and see what happens. 
 
Recall that in Rule 2 the distance and direction between the target and where the marble comes to rest is 
described in red just below the yellow-shaded rows (refer back to page 42).  Rule 2 then shifts the funnel in 
the opposite direction by that same distance from its current position.  The difference between Rules 2 and 
3 is that, in Rule 3, the funnel is instead placed on the opposite side of the target and at that same distance 
from it.  E.g., suppose that the current outcome (position of     ) is 32 (i.e. 2 !above or to the right of     ).   
Then, with Rule 3, the funnel simply gets placed 2 squares !to the left of      , i.e. at 30 – 2 = 28—irrespective 
of where it was before.  Or, if the current outcome was 27 (3 !below or left of    ), the funnel is then placed          
3 squares to the right of  !    , i.e. at 30 + 3 = 33.  This is indeed easier than Rule 2: you’ll soon see that the 
marble and the funnel now simply finish up symmetrically positioned either side of the target—the funnel’s 
previous position in no way affects this decision.  In case of doubt, just refer to this little table: 
 

If      is at … 25 26 27 28 29 30 31 32 33 34 35 … 

you move  to … 35 34 33 32 31 30 29 28 27 26 25 … 

  
So, using your own track, let’s walk through the first few stages with Rule 3.  As usual, we’ll start with the 
funnel at 30.  With the first dice-score being 10 corresponding to the marble finishing up at 3 right of the 
funnel, the marble’s first finishing position is again 33: 
 



1/2,3*+"/2./0$4"3."+.&/$"/2$+5,$67//,8$9:;,3.-,/+$

$!"#$%$$&$$'"()"%*$
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25 26 27 28 29 30 31 32 33 34 3530••3030

25 26 27 28 29 30 31 32 33 34 3530••3030

25 26 27 28 29 30 31 32 33 34 3530••3030

25 26 27 28 29 30 31 32 33 34 3530••3030

 
 
 

 
Now (checking if necessary in that little table), with the marble being at 33 (3 right of     ), you move the fun-
nel to the other side of the target and at that same distance from it, i.e. to 27 (3 left of     ).   
 
 
 
 
 
You’ll realise that this is actually the same as the initial move with Rule 2; but that is simply because the 
funnel was initially at the target, i.e. in both cases the funnel moved from a starting position of 30. 
 
The second dice-score was 8 corresponding to the marble dropping at 1 right of the funnel, and so the next 
position of the marble is 28: 
 
 
 
 
 
 
Since the marble is now at 28 (2 left of     ), Rule 3 moves the funnel to 32 (2 right of     ), i.e. to the opposite 
side of the target and at that same distance from it.  Remember, at this and every stage, you simply move 
the funnel so that it and the marble are symmetrically placed either side of the target      : 
 
 
 
 
 
 
The third dice-score was 6 corresponding to the marble dropping at 1 left of the funnel.  So the marble now 
finishes up at 31.  31 is 1 right of     , and thus you move the funnel to 29 (1 left of     ), giving: 
 
 
 
 
 
And so on.  The fourth and fifth dice-scores were 7 and 4 corresponding respectively to the marble falling 
directly under the funnel and 3 to the left of the funnel.  Carefully confirm with your track that the next 
finishing positions are: marble under funnel at 29, funnel moved to 31, marble at 28, and funnel moved to 32. 
 
Just for interest, take a moment’s thought to guess what will happen in the long term as you take Rule 3 
through its 40 stages.  Then, later on, see if you’ve guessed correctly!  
 
Now, as before, continue your book-keeping using your own dice-scores.  Remember that if      finishes 
exactly on-target at 30 then you indicate this by a  "  in the “As      relative to      is …” row.  However, with 
Rule 3, the consequence is that you then also move  to 30, i.e. directly above the marble; I suggest it 
would therefore be logical for you to indicate this by " in the “… place  relative to     ” row.  
 
If you haven’t already done so, start by copying your “From ,     then goes” rows from page 44 [WB 38–39] 
through this whole table.  Next, check through the first five stages again using your track, and then carry on 
with the rest of your stages. 
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Stage number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 is at 30 27 32 29 31 32         

 3R   1R 1L ! 3L          
 

Outcome:       is at 33 28 31 29 28          

 3R 2L 1R 1L 2L          
    
       ... place  relative to   3L 2R 1L 1R 2R          

 27 32 29 31 32          

  
 
NB  By now you may already have realised that you can again short-circuit the two rows beneath the 
yellow-shaded “Outcome” row, in this case by using the symmetric property emphasised on the previous 
two pages.  This is equivalent to immediately writing in the bottom “So  is now at” row the number which, 
when added to the “Outcome” number, totals 60.  That’s quicker!  Confirm that it’s true in the first part of 
the table above, and then continue to use it if you like it.  As soon as you are happy with it, you can skip the 
two rows under the yellow-shaded row and proceed straight down to the bottom row.  Or if you are not 
happy, carry on using those two rows. 
   

Stage number 15 16 17 18 19 20 21 22 23 24 25 26 27 

 is at              

              
 

Outcome:       is at              

              

              

              

 
 

Stage number 28 29 30 31 32 33 34 35 36 37 38 39 
 

40 

 is at              

              
 

Outcome:       is at              

              

              

              

 

So  is now at

So  is now at

So  is now at
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And now draw the run chart, continuing on from my first five points.  Again, as with the histograms, there’s 
no need to be too artistic about it—please yourself whether or not you use a ruler! 

  
Rule 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Recall that the very first stage in Rule 3 was identical to that in Rule 2 but, as was pointed out at the time, 
this was simply because the funnel was initially at its “sensible” value of 30.  I imagine, however, that you 
subsequently discovered things changed with Rule 3 … .  You may recall Peter Worthington’s observation 
(page 29) that a zig-zag pattern is not random variation! 
 

(Move on to the description of Rule 4 on the next page.) 
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25 26 27 28 29 30 31 32 33 34 3530••3030

25 26 27 28 29 30 31 32 33 34 3530••3030

25 26 27 28 29 30 31 32 33 34 3530••3030

Lacking basic understanding of variation, management may with best intentions have used Rules 2 and/or 
3 in the hope that they would produce better results than Rule 1.  They have failed dismally: instead they 
have considerably increased variation.  Therefore they now try something completely different.  Since it is 
good to reduce variation, they strive to minimise variation at least in the short term.  Certainly there are cir-
cumstances where this may seem quite reasonable in practice.  For example, if you don’t get exactly what 
you want from a supplier, but at least what you receive doesn’t change much from one delivery to the next, 
it is quite possible that you can learn to “cope” (for a while) with whatever arrives.  The situation that really 
throws you is when you get dramatic changes from one delivery to the next (which presumably is what 
happened to you sooner or later during Rule 3)—that’s part of the motivation for trying Rule 4. 
 
So, what do we do with the funnel in Rule 4?  Suppose the current outcome is 33.  The thinking is now that, 
!for low short-term variation, we would like the next outcome to be 33 again or pretty close to it.  How do we 
achieve that?  Easy!  Place the funnel exactly where the marble has just finished up, i.e. at 33.  You will 
have noticed that (again unless you’ve had a very unusual sequence of dice-scores) most of the time the 
marble was finishing up quite close to the funnel—say, no more than 2 squares away from it.  So, in this 
case, the chances are that your next outcome will now be somewhere between 31 and 35—nicely consis-
tent with the aim of achieving low short-term variation, and certainly generally more appealing than what 
Rule 3 eventually produced! 
 
Take a look at my fantastic outcomes (the yellow-shaded row) near the top of page 54 [WB 44]!  Hardly any 
variation for a while; and then, when there is a larger move, we find ourselves right back on the target of 30!  
(As you might realise, that was a very happy accident.)  I wonder what will happen in the longer term ...  
 
So, just to be sure, let’s again walk through the first few stages.  As always, with the funnel initially being 
placed at 30 and the first dice-score being 10, the first outcome is again 33: 
 
 
 
 
 
So, as argued near the bottom of page 50, Rule 4 then places the funnel directly above the marble at 33: 
 
 
 
 
 
The second dice-score was 8 corresponding to the marble dropping at 1 right of the funnel, and so the next 
position of the marble is 34: 
 
 
 
 
 
and then the funnel immediately follows it there: 
 
 
 
 
 
The third dice-score was 6 which corresponds to the marble dropping at 1 left of the funnel, i.e. back to 33, 
and so Rule 4 moves the funnel back to 33 as well:  
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And so it continues.  The fourth and fifth dice-scores were 7 and 4 corresponding respectively to the mar-
ble falling directly under the funnel and then 3 to the left of the funnel.  Confirm that the next positions are   
Stage 4: both marble and funnel still at 33, and Stage 5: both marble and funnel finish up at 30.  So the picture 
stays unchanged at the fourth stage and, at the fifth stage, both the marble and then the funnel end up at the 
target of 30—the “happy accident” to which I referred on page 52. 
 
So off you go for the final time.  Again if you didn’t do so when I first suggested it, you’ll need to start by 
copying over all your “From ,      then goes” rows one final time.  Then, after you’ve generated all your 
Rule 4 outcomes, finish off by sketching your run chart.  As usual, I’ve started the run chart for you on the 
graph-paper.  Also, as with Rule 3, do have an early guess at what you think will happen in the long term!  
 
Rule 4 is one of the easier strategies to carry out, so you can stop using your track as soon as you realise 
you don’t need it any more.  That may be very soon! 
 

(Move on to the table on page 54 [WB 44].) 
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Stage number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 is at 30 33 34 33 33 30         
 
 3R 1R 1L ! 3L          
 

Outcome:       is at 33 34 33 33 30          
 

So move  to 33 34 33 33 30          

 
 

Stage number 15 16 17 18 19 20 21 22 23 24 25 26 27 

 is at              

              
 

Outcome:       is at              

So move  to              

  
 

 
Stage number 28 29 30 31 32 33 34 35 36 37 38 39 

 
40 

 is at              

              
 

Outcome:       is at              

So move  to              
 

(And now move straight on to the run chart on the next page:) 
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Rule 4 
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Summary 
 
As has been obvious for a while (if not from the very start!), you know that, assuming we are “stuck” with 
the amount of variation represented by throwing the two dice, the best thing to do is to put the funnel at the 
desired value of 30 and leave it there.  Moving the funnel anywhere at any time following any “strategy” will 
“only make things worse”.  I trust that sounds familiar! 
 
But putting the funnel at 30 and leaving it there, i.e. Rule 1, is not what many managers (amongst others) 
are keen on doing.  A more familiar scenario is that each result is compared with the target and some 
apparently appropriate action is taken according to the difference.  Specifically, if a result is above the 
target then an action is taken to try to lower the next value to try to “get it right”; or, if the result is below the 
target, an action is taken to try to raise the next value.  As Dr Deming described it—see page 2—this was 
indeed “a noble aim”.  But recall he then also pointed out that “There was only one little trouble”.  Doubt-
less you can recall what that “little trouble” was!  This is precisely what Rule 2 did.  As pointed out earlier, a 
very attractive argument for Rule 2 is that, if only the funnel had already been where Rule 2 now puts it, we 
would have just hit the target spot on.  That’s a supreme example of “being wise after the event”.  Have 
you heard of JIT (Just In Time)?  This is JTL (Just Too Late)! 
 
Since Rule 2 was seen not to do the trick, Rule 3 was tried: Rule 3 is an alternative and simpler version of 
the same idea.  It turned out to be disastrous!  Do people then conclude that it would have been better not 
to do anything at all but to have stuck with Rule 1?  Somehow it doesn’t seem to be very politically accept-
able in management meetings or committee meetings and the like to say that all of our ideas so far have 
been wrong and it would have been better if we had just done nothing.  So a completely different kind of 
attempt is then tried: Rule 4.  For a while it may look as if things are going well: as we have seen, it con-
centrates on reducing short-term variation as much as possible.  It succeeds in doing that.  The conse-
quence is that it may actually look better than Rule 1 in the short term!  But not for long … .  Actually you 
may have been suspicious that trouble might lie ahead from the simple fact that (except for initially placing 
the funnel at 30) the operation of Rule 4 totally ignores the target! 
 
What do Rules 2, 3 and 4 do?  They show how, in Dr Deming’s terms, people (especially management) 
spend so much of their time !tampering with the system ( = thinking they may be doing something useful 
but, in fact, making performance worse) rather than !improving the system ( = making performance better).  
I think that, having carried out this Major Activity, that word “tampering” may also mean more to you now 
than it used to!  
 
Some may find that phrase “it would have been better if we had just done nothing” to be somewhat star-
tling!  So, to be sure of its context, let’s recall a sentence from page 48: “But, as Dr Deming often pointed 
out, it’s better to do nothing than to do the wrong thing!”.  That’s the point.  Obviously it’s not better to do 
nothing rather than doing the right thing!  But the vital message to strike home is that, when you have a sta-
ble process, the only “right thing” to do is to investigate that process carefully in order to discover what is 
causing some of its current variation and then to make some changes to the process which will reduce that 
variation (and not only in the short term, for that’s Rule 4).  There is no other way. 
 
Finally in this Major Activity, please take a brief look at a couple of runs of the experiment that I have 
carried out using my computer simulation program.  There is also some more discussion there on the Fun-
nel Experiment in general and on this Major Activity in particular.  See Appendix pages 15–18. 

 
In Part A of the Optional Extras section we shall examine in detail what happens to control charts when 
presented with the data from the two simulations of the Funnel Experiment studied in the Appendix.  How-
ever, particularly in case you decide that that optional material is not for you, Activities 3–i and 3–j consider 
some general effects of putting data from the four Rules of the Funnel onto control charts. 
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ACTIVITY 3–i 
 

!Having spent much of this morning on beginning to get used to control charts and now this afternoon 
on the Funnel Experiment, this is a useful Activity which involves both of them.  However, if you are a 
Stats-level 0 student then this possibly isn’t for you. 

 
Let’s first précis the “How Do We Compute Those Control Limits—and Why?” section on pages 13–15 
as follows: 
 

“Control limits need to indicate the range over which the data will vary when the process is in 
statistical control: so that, if and when data go outside those limits, we have evidence that the 
process may well be out of statistical control.  But suppose the process is out of statistical con-
trol when we collect those data.  The method we use is based on ‘moving ranges’.  Obviously, if 
many of these moving ranges are large then high variation is indicated; whereas if the moving 
ranges are mostly small then low variation is indicated.  Using moving ranges works pretty well 
in mitigating the contamination effects of many kinds of special causes.  There are a few excep-
tions.  Two important exceptions that one needs to be able to recognise are illustrated with data 
generated in the Funnel Experiment, and so we shall see those this afternoon.”   

 
With these thoughts in mind, imagine that you are computing control limits (using moving ranges) from 
data that are being generated from each of the four Rules of the Funnel in turn.  How do you think those 
data will affect the control limits, and what would happen if you extended those limits into the future 
during which the same Rule is in operation? 
 
Rule 1 
 
 
 
 
Rule 2 
 
 
 
 
Rule 3 
 
 
 
 
Rule 4 
 
 
 

 
 (For discussion see Appendix pages 18–20.) 
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DemDim Chapter 5 describes the original version of the Funnel Experiment and shows some typical results 
from it.  The chapter is quite short: less than 12 pages, and you should now find it to be a very quick and 
easy read.  So, for completeness, do now please read it—you will soon see the analogies with what you 
have produced during your experiment.  In the second half of the chapter you will find ! some real-life illus-
trations of the messages coming from the Funnel Experiment—they are but a few of many.  
  

 
 

 
ACTIVITY 3–j 

 
Now that you have completed the Major Activity and after reading DemDim Chapter 5, !it would be good 
if you could spend the final few minutes summarising some illustrations of your own.  You will find fur-
ther suggestions in the relevant discussion in the Appendix—but don’t look at it just yet! 
 

It is often not possible to differentiate between Rules 2 and 3 when suggesting examples.  As we have 
seen, in effect the difference between them depends on whether the tampering is done comparatively 
sensibly or completely stupidly!  Also, the performances of some practical illustrations are worse than 
Rule 2 but not as berserk as Rule 3!  I would recommend therefore that, in addition to a list of possi-
bilities for Rule 4, you simply compile one other list to cover both Rules 2 and 3 to thus include any 
kind of “zig-zag” or “swinging the pendulum” compensation effect.  Further, the Rule 4 list does not 
need to be restricted to a strict version of Rule 4.  For example, a photocopy of a photocopy of a pho-
tocopy of … is similar to Rule 4 except that it continually moves away from the target (the original 
copy) rather than being able to temporarily move back toward it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(For some final examples see Appendix pages 20–21.) 
 
 
As mentioned on page 56, the data from the two runs of the Funnel Experiment that are examined in the 
Appendix are studied using control charts in Part A of the Optional Extras section.  However, we are now at 
the end of Day 3 and therefore to look at that optional extra material will indeed have to be an “out-of-
hours” activity! 
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Approvals, Acknowledgments and Information 
 

a (page 5) The Ford Motor Company example and diagrams are included with the approval of Bill Scherken-
bach.  $

b (page 32) This and all other quotations from Understanding Statistical Process Control have been reproduced 
with the approval of SPC Press Inc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


